forallx

BRISTOL

Version from September 3, 2025



forall x: Bristol

Textbook for
PHIL10032: Logic and Critical Thinking 2022-23

Also used in
PHIL10014: Introduction to Formal Logic 2022-23

By P. D. Magnus

Tim Button

with additions by

J- Robert Loftis
Robert Trueman
remixed and revised by
Aaron Thomas-Bolduc
Richard Zach

and by

Catrin Campbell-Moore
Johannes Stern

Email any comments or corrections to catrin.campbell-
moore@bristol.ac.uk
Last updated September 3, 2025


mailto:catrin.campbell-moore@bristol.ac.uk
mailto:catrin.campbell-moore@bristol.ac.uk

This book is based on foralla: Calgary by

Aaron Thomas-Bolduc & Richard Zach
University of Calgary

used under a CC BY-SA 4.0 license, which is based on foralla: Cambridge, by

Tim Button
University of Cambridge

used under a CC BY-SA 3.0 license, which is based in turn on foralla, by

P.D. Magnus
University at Albany, State University of New York

used under a CC BY-SA 3.0 license.
and was remixed, revised, & expanded by

Aaron Thomas-Bolduc & Richard Zach
University of Calgary
then altered by

Catrin Campbell-Moore & Johannes Stern
University of Bristol Further contributors: Stuart Presnell, Richard Pettigrew.

It includes additional material from forallx by P.D. Magnus and Metatheory
by Tim Button, both used under a CC BY-SA 3.0 license, and from foralla:
Lorain County Remix, by Cathal Woods and J. Robert Loftis, used under a CC
BY-SA 4.0 license.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 license.
You are free to copy and redistribute the material in any medium or format, and remix,
transform, and build upon the material for any purpose, even commercially, under the
following terms:

> You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way
that suggests the licensor endorses you or your use.

> If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.


https://github.com/rzach/forallx-yyc/
https://creativecommons.org/licenses/by-sa/4.0/
http://people.ds.cam.ac.uk/tecb2/forallx.shtml
http://people.ds.cam.ac.uk/tecb2/index.shtml
https://creativecommons.org/licenses/by-sa/3.0/
https://www.fecundity.com/logic/
https://www.fecundity.com/job/
https://creativecommons.org/licenses/by-sa/3.0/
http://people.ds.cam.ac.uk/tecb2/metatheory.shtml
https://creativecommons.org/licenses/by-sa/3.0/
https://github.com/rob-helpy-chalk/openintroduction
https://github.com/rob-helpy-chalk/openintroduction
https://sites.google.com/site/cathalwoods/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Preface

The book is divided into nine parts. Part I introduces the topic and
notions of logic in an informal way, without introducing a formal lan-
guage yet. Parts II-IV concern truth-functional languages. In it, sen-
tences are formed from basic sentences using a number of connectives
(‘or’, ‘and’, ‘not’, ‘if ...then’) which just combine sentences into more
complicated ones. We discuss logical notions in two ways: semantically,
using the method of truth tables (in Part II) and proof-theoretically, us-
ing a system of formal derivations (in Part IV). Parts V-VII deal with
a more complicated language, that is, the language of first-order logic.
It includes, in addition to the connectives of truth-functional logic, also
names, predicates, identity, and the so-called quantifiers. These addi-
tional elements of the language makes it much more expressive than
the truth-functional language, and we’ll spend a fair amount of time
investigating just how much one can express in it. Again, logical no-
tions for the language of first-order logic are defined semantically, using
interpretations, and proof-theoretically, using a more complex version
of the formal derivation system introduced in Part IV.

In the appendices you’ll find a discussion of alternative notations for
the languages we discuss in this text, of alternative derivation systems,
and a quick reference listing most of the important rules and definitions.
The central terms are listed in a glossary at the very end.

This book is based on a text originally written by P. D. Magnus
in the version revised and expanded by Tim Button. It also includes
some material (mainly exercises) by J. Robert Loftis. Aaron Thomas-
Bolduc and Richard Zach have combined elements of these texts into
the present version, changed some of the terminology and examples,
rewritten some sections, and added material of their own. Catrin
Campbell-Moore and Johannes Stern have then both made substantial
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alterations for the Bristol course. The resulting text is licensed under a
Creative Commons Attribution-ShareAlike 4.0 license.



Contents

Preface iii
I Arguments 1
1 Arguments 2

The scope of logic 12
II Truth-functional logic 25
3 A Prolegomenon to TFL 26
4  Syntax of TFL 29
5  Use and mention 38
6  Semantics of TFL 43
III  Symbolizations in TFL 65
7 First steps towards Symbolization 66
8  Symbolizing Arguments 68
9  On Truth-functional connectives 87
10 Ambiguity 89
IV~ Natural deduction for TFL 95
11 The very idea of natural deduction g6



12 The First Basic Rules for TFL: the basic rules without sub-

proofs 102
13 More Basic Rules for TFL: the basic rules with subproofs 115
14 Proofs and Validity 132
15 Derived rules for TFL 136
16  Derived rules 141
17 Soundness and completeness 146
18 Proof-theoretic concepts 154
\' First-order logic 157
19 Building blocks of FOL 158
20 Sentences of FOL 171
21 FOL-Symbolisations 178
22 Common Quantifier Phrases and Domains 185
23  Symbolisation: Multiple quantifiers 196
24 Ambiguity 207
VI FOL-Semantics 210
25 Sets and Relations 211
26  Truth in FOL 219
27 Semantic concepts 231
28 Using interpretations 233
29 Reasoning about all interpretations 239
VII Natural deduction for FOL 243
30 Basic rules for FOL 244
31 Conversion of quantifiers 260
32 Derived rules 262
33 Proof-theoretic and semantic concepts 264
Appendices 269
A Symbolic notation 269

B Quick reference 272






PART |

Arguments



CHAPTER 1

Arguments

1.1 Introduction and Overview

In philosophy we think, reason, and argue. We intellectually scrutinize
theories and view points. We reflect on arguments in support or in op-
position of some philosophical position. In other words arguments and
argumentation take centerstage in philosophy. But what is an argument
and what are good arguments?

An argument, as we will understand it, is something like this:

e If I acted of my own free will, then I could have acted otherwise.
¢ | could not have acted otherwise.
¢ Therefore: I did not act of my own free will.

We here have a series of sentences which may either be true or
false. The final sentence, “I did not act of my own free will.” expresses
the conclusion of the argument. The two sentences before that are the
premises of the argument. In a good argument, the conclusion follows
from the premises. If you believe the premises then the argument should
lead you to believing the conclusion.

On the face of it, our sample argument appears to be a good argu-
ment, but can one develop a general theory of what a good argument
is, that is, a theory that abstracts away from particular arguments and
equips us with general tools for evaluating arguments? It turns out that
one can and this general theory is what we call ‘logic’.

In logic we want to abstract away from specific arguments and their
particular content, and focus on specific structural features of argu-
ments. To achieve this logic is spelled out in its own particular language
like, say, latin. This means that learning logic amounts to learning a



new language and it can be helpful to approach the course with this
mindset. As we want to make sure that there are no ambiguities or mis-
understandings the language of logic happens to be a formal language.
Now to learn a language one needs to

Voc: learn its vocabulary (what are the basic expressions of language?);

GRA: learn its grammar (what is a well-formed sentence of the lan-
guage?);

SEM: learn what the sentences of the new language say or mean;
PrTH: learn how to use the new language and how to reason with it.

This course is about learning logic and thus learning the language of
logic. Accordingly, we will work ourselves through the different items
of the above list. But in addition we need to think about how this
helps us with assessing philosophical arguments and reasoning, which
is carried out in English or some other natural language. To this effect
we discuss how one can symbolize (or formalize) English arguments in
the language of logic, which will allow us to evaluate English arguments
in the logical language. Summing up, the structure of the course will
be as follows: we first introduce the sYNTAX of the language, which
subsumes both Voc and GrA, and then turn to its SEMANTICS (SEM),
that is, the meaning of the sentences of the language. The semantics
of the language will also allow us to spell out whether an argument
is a good argument from the logical perspective. Such an argument
is called a valid argument. We then explain how to symbolize English
sentences in the logical language, which enables us to check whether an
English argument is valid or not. Finally, we turn to PfTh and introduce
a reasoning system for the logical language, that makes it possible for
us to argue or reason within the logical language. In the context of
our formal language, this means that we give a proof system, that is,
we specify a number of rules that allows us to derive a sentence (the
conclusion) from other sentences (the premises) in the same way that
in natural language a good argument licenses us to infer the conclusion
of the argument from its premises. Importantly, the rules will only
allow us to produce valid argument. If we apply the rules correctly our
reasoning cannot go wrong (this doesn’t meant that our premises were
true however).

But we are getting ahead of ourselves and before we introduce the
language of logic, we should first better understand what an argument



is and which arguments are good ones. To this effect we discuss argu-
ments in natural languages and more specifically arguments in English.
As we mentioned at the beginning, understanding and evaluating ar-
guments is a crucial aspect of philosophy. Reflecting and investigating
arguments will thus help you to analyse some of the texts you are read-
ing during your philosophy studies.

1.2 Finding the components of an argument

Arguments consist of a list of premises along with a conclusion. In a good
argument, the conclusion will follow from the premises. Our standard
way to present them is:

1. Premise 1
2. Premise 2

n. Premise n
.. Therefore: Conclusion

For example

1. If I acted of my own free will, then I could have acted otherwise.
2. I could not have acted otherwise.
.. Therefore: I did not act of my own free will.

The three dots in this final line can be read “therefore”. Really then
we’re duplicating things by also adding the word “Therefore”. But we
do this to really carefully highlight that this is the conclusion.

Often arguments are presented simply in a paragraph of text, or in
a speech or article, and we first have to work out what the premises and
conclusions are. Sometimes it’s easy, for example:

If I acted of my own free will, then I could have acted oth-
erwise. But, I could not have acted otherwise. So, I did not
act of my own free will.

But often it is a significant piece of work to work out the premises and
conclusion of an argument.

Many arguments start with premises, and end with a conclusion,
but not all of them. It might start with the conclusion:

We should not have a second Brexit referendum. A
second Brexit referendum would erode the very basis of



democracy by suggesting that rule by the majority is an
insufficient condition for democratic legitimacy.

Or it might have been presented with the conclusion in the middle:

Since the first Brexit referendum was made under false pre-
tences, the voters deserve a further say on any final
deal agreed with Brussels. After all, decisions as big as
this need to have the public support, which has to come
from a referendum.

Sometimes premises or the conclusion may be clauses in a sentence.
A complete argument may even be contained in a single sentence:

The butler has an alibi; so they cannot have done it.

This argument has one premise, followed immediately by its conclusion.
One particular kind of sentence can be confusing. Consider:

¢ If the murder weapon was a gun, then Prof. Plum did it.

These conditional, or “if-then”, statements might look like it expresses
the argument, but in itself it does not. It’s just stating a fact, albeit
a conditional fact. It might also be used in an argument, even as the
conclusion of the argument:

1. If T have free will, then there is some event that I could have
caused to go differently.

2. If determinism is true, then there is no event that I could have
caused to go differently.

.. Therefore: If determinism is true, I do not have free will.

As a guideline, there are some words you can look for which are
often used to indicate whether something is a premise or conclusion:

Words often used to indicate an argument’s conclusion:
so, therefore, hence, thus, accordingly, consequently
Words often used to indicate a premise:

since, because, as, given that, recalling that, after all

In analysing an argument, there is no substitute for a good nose.
Whenever you come across an argument in a piece of philosophy you



read, be it lecture notes, primary text, or secondary text, or in a news-
paper article or on the internet, practice identifying the premises and
conclusion.

Sometimes, though, people aren’t giving arguments but are simply
presenting facts or stating their opinion. For example, the following do
not contain arguments, they’re not trying to convince us of anything.

e I don’t like cats. I think they’re evil.

¢ Hundreds of vulnerable children as young as 10, who have spent
most of their lives in the UK, are having their applications for
British citizenship denied for failing to pass the government’s con-
troversial ‘good character’ test.

1.3 Intermediate Conclusions

We said an argument is given by a collection of premises along with a
single conclusion. We might represent this as something like:

|

The premises are working together to lead to the conclusion.

But sometimes in the process of someone making an argument
someone will make use of intermediate conclusions. Such arguments
might have a structure more like:

Intermediate Conclusion

{

{

Final Conclusion



However, we say that an argument is only something of the first kind.
So what do we say about the second kind of thing? We can consider
it two ways. We could consider it as an argument from premise 1, 2
and 3 to the conclusion. Or alternatively we can think of it as two
arguments of the first kind chained together, one from premise 1 and 2
to the intermediate conclusion, and the second from the intermediate
conclusion and premise 3 to the final conclusion.

1.4 Sentences

What kinds of things are the premises and conclusions of arguments?
They are sentences which can either be true or false. Such sentences
are called DECLARATIVE SENTENCES.

There are many other kinds of sentences, for example:

Questions ‘Are you sleepy yet?’ is an interrogative sentence. Although
you might be sleepy or you might be alert, the question itself is
neither true nor false. For this reason, questions will not count
as declarative sentences. Suppose you answer the question: ‘I am
not sleepy.” This is either true or false, and so it is a declara-
tive sentences. Generally, guestions will not count as declarative
sentences, but answers will.

‘What is this course about?’ is not a declarative sentence (in our
sense). ‘No one knows what this course is about’ is a declarative
sentence.

Imperatives Commands are often phrased as imperatives like ‘Wake
up!’, ‘Sit up straight’, and so on. These are imperative sentences.
Although it might be good for you to sit up straight or it might
not, the command is neither true nor false and it is thus not
a declarative sentence. Note, however, that commands are not
always phrased as imperatives. “You will respect my authority’ is
either true or false— either you will or you will not— and so it
counts as a declarative sentences.

Exclamations ‘Ouch!’ is sometimes called an exclamatory sentence,
but it is not the sort of thing which is true or false. “That hurt!’,
however, is a declarative sentence.

Arguments are formed of declarative sentences — those sentences
which can be true or false — for example ‘spiders have eight legs’.



An ARGUMENT consists of a collection of declarative sentences
of which one is marked as the conclusion of the argument.

The unmarked declarative sentences are of course the premises of
the argument. We typically drop the term ‘declarative’ and simply call
them sentences, but bear in mind that it is only these sorts of sentences
that are relevant in this textbook.

You should not confuse the idea of a sentence that can be true or
false with the difference between fact and opinion. Often, sentences in
logic will express things that would count as facts— such as ‘spiders
have eight legs’ or ‘Kierkegaard liked almonds.” They can also express
things that you might think of as matters of opinion—such as, ‘Almonds
are tasty.” In other words, a sentence is not disqualified from being part
of an argument because we don’t know if it is true or false, or because its
truth or falsity seems to be a purely subjective matter. All that matters
is whether what the sentence expresses it is the sort of thing that could
be true or false. If it is, it can play the role of premise or conclusion.

When you are reading a text and putting it in our standard form
you should make sure that your premises and conclusions are declara-
tive sentences. You should also make them as clear as possible. Each
premise and the conclusion should be able to be read and understood
independently. Any context from the original paragraph should be
copied over to each of the premises and conclusions. For example:

Donating to charity no strings attached is the most effective
way to do so. So if you are going to donate to charity, you
should do it this way.

When presenting this we should fill out “this way” with the relevant way.
So I'd write:

1. Donating to charity no strings attached is the most effective way
to do so.

.. Therefore: If you are going to donate to charity, you should do
so no strings attached.

Practice exercises

At the end of some chapters, there are exercises that review and explore
the material covered in the chapter. There is no substitute for actually



working through some problems. This course isn’t about memorizing
facts but about developing a way of thinking.
So here’s the first exercise.

A.

3.
4.

1.

Are arguments always presented in our standard form?

. Do conclusions always come after the premises in arguments in

texts?
Might premises and conclusions be clauses within sentences?
Can questions be premises?

. Write down the conclusion of each of these arguments:

It is sunny. So I should take my sunglasses.

2. It must have been sunny. I did wear my sunglasses, after all.

No one but you has had their hands in the cookiejar. And the
scene of the crime is littered with cookie-crumbs. You’re the cul-
prit!

Miss Scarlett and Professor Plum were in the study at the time of
the murder. Reverend Green had the candlestick in the ballroom,
and we know that there is no blood on his hands. Hence Colonel
Mustard did it in the kitchen with the lead-piping. Recall, after
all, that the gun had not been fired.

Since I do not know that I am not under the spell of a malicious
demon, I do not know that this table exists. After all, if I know
that this table exists, then I know that I am not under the spell
of a malicious demon.

. Cutting the interest rate will have no effect on the stock market

this time round as people have been expecting a rate cut all along.
This factor has already been reflected in the market.

Virgin would then dominate the rail system. Is that something the
government should worry about? Not necessarily. The industry is
regulated, and one powerful company might at least offer a more
coherent schedule of services than the present arrangement has
produced. The reason the industry was broken up into more than
100 companies at privatisation was not operational, but political:
the Conservative government thought it would thus be harder to
renationalise. The Economist 16.12.2000; used on critical thinking
web

The idea that being vegetarian is better for the environment has,
over the last forty years, become a piece of conventional wisdom.


https://philosophy.hku.hk/think/arg/arg.php
https://philosophy.hku.hk/think/arg/arg.php

But it is simply wrong. A paper from Carnegie Mellon Univer-
sity researchers published this week finds that the diets recom-
mended by the Dietary Guidelines for Americans, which include
more fruits and vegetables and less meat, exacts a greater en-
vironmental toll than the typical American diet. Shifting to the
diets recommended by Dietary Guidelines for American would
increase energy use by 38 percent, water use by ten percent and
greenhouse gas emissions by six percent, according to the paper.
There are no hard numbers, but the evidence from Asia’s expa-
triate community is unequivocal. Three years after its handover
from Britain to China, Hong Kong is unlearning English. The
city’s gweilos (Cantonese for “ghost men") must go to ever greater
lengths to catch the oldest taxi driver available to maximize their
chances of comprehension. Hotel managers are complaining that
they can no longer find enough English- speakers to act as recep-
tionists. Departing tourists, polled at the airport, voice growing
frustration at not being understood.

The Economist 20.1.2001, used in Critical Thinking Web

C. Write each of the following arguments in the standard form.

X.

It might surprise you, but denoting to charity no strings attached
is the most effective way to do so. So if you are going to donate
to charity, you should do it this way.

. Answer:

1. Denoting to charity no strings attached is the most effective
way to do so.

.. Therefore: If you are going to donate to charity, you should
do so no strings attached.

. It is sunny. So I should take my sunglasses.

It must have been sunny. I did wear my sunglasses, after all.

No one but you has had their hands in the cookiejar. And the
scene of the crime is littered with cookie-crumbs. You’re the cul-
prit!

Kate didn’t write it. If Kate or David wrote it, it will be reliable;
and it isn’t.


https://philosophy.hku.hk/think/arg/arg.php

6. Since I do not know that I am not under the spell of a malicious
demon, I do not know that this table exists. After all, if I know
that this table exists, then I know that I am not under the spell
of a malicious demon.

7. Miss Scarlett and Professor Plum were in the study at the time
of the murder. And Reverend Green had the candlestick in the
ballroom, and we know that there is no blood on his hands. Hence
Colonel Mustard did it in the kitchen with the lead-piping. Recall,
after all, that the gun had not been fired.



CHAPTER 2

The scope of
logic

2.1 Consequence and validity

In §1, we talked about arguments, i.e., a collection of sentences (the
premises), followed by a single sentence (the conclusion). We said that
some words, such as “therefore,” indicate which sentence is supposed
to be the conclusion. “Therefore,” of course, suggests that there is a
connection between the premises and the conclusion, namely that the
conclusion follows from, or is a consequence of, the premises.

This notion of consequence is one of the primary things logic is
concerned with and we will ultimately define a precise notion of conse-
quence for our formal language. One might even say that logic is the
science of what follows from what. Logic develops a general account of
and general tools that tell us when a sentence follows from some other
sentences.

What about the following argument:

1. The butler or the gardener did it.
2. The butler did not do it.
.. Therefore: The gardener did it.

We don’t have any context for what the sentences in this argument refer
to. Perhaps you suspect that “did it” here means “was the perpetrator”
of some unspecified crime. You might imagine that the argument occurs
in a mystery novel or TV show, perhaps spoken by a detective working
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through the evidence. But even without having any of this information,
you probably agree that the argument is a good one in the sense that
whatever the premises refer to, if they are both true, the conclusion is
guaranteed to be true as well. If the first premise is true, i.e., it’s true
that “the butler did it or the gardener did it,” then at least one of them
“did it,” whatever that means. And if the second premise is true, then
the butler did not “do it.” That leaves only one option: “the gardener
did it” must be true. Here, the conclusion follows from the premises.
We call arguments that have this property VALID.
By way of contrast, consider the following argument:

1. If the driver did it, the maid didn’t do it.
2. The maid didn’t do it.
.. Therefore: The driver did it.

We still have no idea what is being talked about here. But, again, you
probably agree that this argument is different from the previous one
in an important respect. If the premises are true, it is not guaranteed
that the conclusion is also true. The premises of this argument do not
rule out, by themselves, that someone other than the maid or the driver
“did it.” In this second argument, the conclusion does not follow from
the premises. If, like in this argument, the conclusion does not follow
from the premises, we say it is INVALID.

We said the first argument was valid because if the premises will
be true, we are guaranteed that the conclusion is true. In fact in this
argument the premises guarantee the truth independently of whether
we are talking about butlers, crocodiles, murderers or cake thieves:

1. The crocodile or the kangaroo stole the cake.
2. The crocodile did not steal the cake.
.. Therefore: The kangaroo stole the cake.

It is irrelevant for the validity of the argument what the premises and the
conclusion are about. The argument is valid on all ways of interpreting
the premises as long as we understand the sentential connectives ‘or’
and ‘not’. To put it in less abstract terms an argument is valid if and
only if no COUNTEREXAMPLE to the argument can be produced.

An argument is VALID if and only if there is no interpretation
such that all the premises are true and the conclusion false.
Otherwise the argument is INVALID.




We said that the following argument was invalid.

1. If the driver did it, the maid didn’t do it.
2. The maid didn’t do it.
.. Therefore: The driver did it.

Can we find a counterexample to the argument? The answer is yes.
For example, if we understand ‘did it’ as ‘mowed the lawn’, then the
premises of the argument are both true, but the conclusion is false, as
it was the gardener who mowed the lawn (at least on one interpreta-
tion/scenario).

Earlier we introduced the idea that the conclusion of an argument
is meant to follow from the premises; that it is a consequence of the
premises. This motivates the following definition:

A sentence Y is a LOGICAL CONSEQUENCE of sentences Xj, ...,
X, if and only if there is no interpretation such that Xi, ...,
X, are all true and Y is not true. (We then also say that ¥
LOGICALLY FOLLOWS FROM X1, ..., X;.)

Another way of saying that Y is a logical consequence of sentences
Xi, ..., X, is to say that the argument with premises Xj, ..., X, and
conclusion Y is valid.

Valid arguments are arguments for which there is no interpretation
such that all premises are true but the conclusion is not. It is irrelevant
whether such an interpretation is “reasonable”: no matter how unrea-
sonable an interpretation is that can be used to give a counterexample
to an argument, if there exists such an interpretation the argument will
not be valid.

Is there a straightforward way of telling whether an argument is
logical valid? Is there some feature that sets apart all valid arguments
from other (possibly convincing) arguments? We have already seen
that validity should not depend on the content of the premises and
conclusion. Rather it should only depend on their (logical) form. For
instance, consider the valid argument

1. Either Priya is an ophthalmologist or a dentist.
2. Priya isn’t a dentist.
.. Therefore: Priya is an ophthalmologist.

We can describe the “form” of this argument as the following pattern:



1. Either g isan Fora G.
2. aisn’tan F.
.. Therefore: a is a G.

Here, a, F, and G are placeholders for appropriate expressions that,
when substituted for a, F, and G, turn the pattern into an argument
consisting of sentences (at a first approximation this is also one way of
understanding the “interpretation” talk). For instance,

1. Either Mei is a mathematician or a botanist.
2. Mei isn’t a botanist.
.. Therefore: Mei is a mathematician.

is an argument of the same form and it is also valid. However, the
following argument is not of the same form:

1. Either Priya is an ophthalmologist or a dentist.
2. Priya isn’t a dentist.
.. Therefore: Priya is an eye doctor.

we would have to replace F by different expressions (once by “oph-
thalmologist” and once by “eye doctor”) to obtain it from the pattern.
This argument is not valid. To see that the conclusion follows from the
premises we need the additional information that an ophthalmologist
is indeed an eye doctor, that is, we need information that “ophthalmol-
ogist” and “eye doctor” mean the same thing.

To see more clearly that the latter argument cannot be deemed valid
solely on the basis of its logical form let’s consider its form:

1. Either ¢ isan F ora G.
2. aisn’tan F.
.. Therefore: a is a H.

In this pattern we can replace F' by “ophthalmologist” and H by “eye
doctor” to obtain the original argument. But here is another argument
of the same form which can be obtained by replacing F by “is a math-
ematician”, G by “is a botanist”, and. H by “is an acrobat”:

1. Either Mei is a mathematician or a botanist.
2. Mei isn’t a botanist.
.. Therefore: Mei is an acrobat.



This argument is clearly not valid. The conclusion does not follow from
the premises of the argument.

In valid arguments the conclusion follows from the premises of the
argument solely in virtue of its logical form, that is, the logical struc-
ture of the premises and the conclusion. This feature is an aspect of
the so-called FORMALITY of logic. Much of the present logic course
will be devoted to studying and determining valid argument forms and
structures, and to make precise the idea of interpretation we used in
discussing the validity of arguments.

2.2 Sound arguments

Arguments in our sense, as conclusions which (supposedly) follow from
premises, are of course used all the time in everyday reasoning, but also
philosophical and scientific discourse. When they are, arguments are
given to support or even prove their conclusions. Now, if an argument
is valid, it will support its conclusion, but only if its premises are all
true: validity rules out that the premises are true and the conclusion
false. It does not, by itself, rule out that the conclusion is false, as
the premises can be false. An argument can be valid, but have false
premises. In short, a valid argument may have a conclusion that is not
true!
Consider this example:

1. Oranges are either fruit or musical instruments.
2. Oranges are not fruit.
.. Therefore: Oranges are musical instruments.

The conclusion of this argument is ridiculous. Nevertheless, it logically
follows from the premises due to the logical form of the argument. For
what the argument is concerned, it is not relevant whether the oranges
are musical instruments (of course, they are not!). What is relevant
is that if according to a (weird) interpretation Oranges are either fruit
or musical instruments, but not fruit, then oranges are musical instru-
ments according to that interpretation: If both premises are true, then
the conclusion just has to be true independently of the content of the
premises and the conclusion. The argument is valid.

Conversely, having true premises and a true conclusion does not
guarantee that the argument is valid. Consider this example:

1. London is in England.



2. Beijing is in China.
.. Therefore: Paris is in France.

The premises and conclusion of this argument are all true, but the
argument is invalid. The logical form of premises and conclusion do not
guarantee that the conclusion is true whenever the premises are true:
on an interpretation on which ‘France’ is interpreted to mean Great
Britain, the conclusion is not true, even though both of the premises
would remain true. So the argument is invalid.

The important thing to remember is that validity is not about the
truth or falsity of the sentences in the argument. It is about whether
the conclusion follows from the premises of the argument in virtue of
their logical form; about whether the conclusion is true whenever the
premises are true, that is, whether for all interpretations on which all
premises are true, the conclusion is true likewise. Nothing about the
way things are—whether something is true or false—can by itself de-
termine if an argument is valid. It is often said that logic doesn’t care
about feelings. Actually, it doesn’t care about facts, either.

When we use an argument to prove that its conclusion is true, then,
we need two things. First, we need the argument to be valid, i.e., we
need the conclusion to logically follow from the premises. But we also
need the premises to be true. We will say that an argument is SOUND if
and only if it is both valid and all of its premises are true.

The flip side of this is that when you want to rebut an argument,
you have two options: you can show that (one or more of) the premises
are not true, or you can show that the argument is not valid. Logic,
however, will only help you with the latter!

2.3 Missing premises

Most arguments we make and evaluate in everyday reasoning are not
valid simpliciter. We are often interested in whether the conclusion
follows from the premises given certain implicit or explicit background
assumptions which the interlocutor has failed to explicitly mention. If
the missing background assumption is explicitly added as a premise,
the argument may turn out to be valid after all. For example, we already
discussed that the argument

1. Either Priya is an ophthalmologist or a dentist.
2. Priya isn’t a dentist.
.. Therefore: Priya is an eye doctor.



is strictly speaking not a valid argument. Still it seems to be a good
argument in the sense that the truth of the premises seems to guarantee
the truth of the conclusion. One explanation for why we think it is a
good argument, is that it can easily be turned into a valid argument by
adding the (true) premise

1. If Priya is an ophthalmologist, then Priya is an eye doctor.

Arguably this premise is one we all implicitly assume, which explains
why an interlocutor might not feel the need of mentioning it.

Sometimes it is not obvious to tell what kind of implicit underlying
assumption are assumed in the formulation of an argument. If someone
you disagree with makes an invalid argument it’s often more useful (and
more charitable) to consider whether there are missing premises rather
than to simply dismiss the argument. Perhaps the author or interlocutor
was assuming that an additional premise was so obvious that it didn’t
need to be stated.

For example an author might make the following argument:

1. I could not have acted otherwise.
.. Therefore: I did not act of my own free will.

This argument is invalid. But, it can be made valid by addition of the
premise:

1. If I could not have acted otherwise, I did not act of my own free
will.

But be careful when you'’re filling in ‘missing’ premises. The aim
is to help improve the argument, to make it more convincing, so you
can assess it fairly. Only add extra premises that seem reasonable,
or that you think the original author would agree with. There’s no
point in adding absurd or unreasonable premises, or premises that the
author wouldn’t endorse. Then you just create a strawman argument —
a caricature of the original argument.

“Just how charitable are you supposed to be when crit-
icizing the views of an opponent? If there are obvious
contradictions in the opponent’s case, then of course you
should point them out, forcefully. If there are somewhat
hidden contradictions, you should carefully expose them to
view—and then dump on them. But the search for hidden



contradictions often crosses the line into nitpicking, sea-
lawyering, and—as we have seen—outright parody. The
thrill of the chase and the conviction that your opponent
has to be harboring a confusion somewhere encourages un-
charitable interpretation, which gives you an easy target to
attack. But such easy targets are typically irrelevant to the
real issues at stake and simply waste everybody’s time and
patience, even if they give amusement to your supporters.”
Daniel C. Dennett (2013). “Intuition Pumps And Other Tools for
Thinking”.

Dennett formulates the following four rules (named after Anatol
Rapoport) for “how to compose a successful critical commentary”:

1. You should attempt to re-express your target’s position so clearly,
vividly, and fairly that your target says, “Thanks, I wish Id
thought of putting it that way.”

2. You should list any points of agreement (especially if they are not
matters of general or widespread agreement).

3. You should mention anything you have learned from your target.

4. Only then are you permitted to say so much as a word of rebuttal
or criticism

2.4 Beyond Validity

As we mentioned, many arguments we make and evaluate in every-
day reasoning are not strictly speaking valid. As discussed sometimes
important implicit premises are not made explicit. However, the fact
that implicit premises are not made explicit point to a more general
phenomenon, namely, that in everyday reasoning we take certain con-
ceptual or meaning relations for granted. Going back to the argument
involving Priya, we found the the conclusion “Priya is an eye doctor”
not to be a logical consequence of the premises despite the fact that
intuitively one might be inclined to say the the conclusion follows from
the premises of the argument. While the argument is not strictly speak-
ing valid, the conclusion follows from the premises of the argument
once we acknowledge that ‘ophthalmologist’ is just a fancy word for an
eye doctor. More generally, there is no interpretation that respects all
conceptual relations between expressions of the language on which all



premises are true but the conclusion false, that is, there is no coun-
terexample to the argument involving Priya which acknowledges that
‘ophthalmologist’ and ‘eye doctor’ mean the same thing.

Arguments for which there is no interpretation that respects all
conceptual/meaning connections between the various words of our lan-
guage are sometimes called CONCEPTUALLY VALID and sometimes you’ll
find the term ‘validity’ used in this sense in the literature . For example,
the arguments

1. Priya is an ophthalmologist.
.. Therefore: Priya is an eye doctor.

1. Jonas is a bachelor.
.. Therefore: Jonas is an unmarried man.

are both conceptually valid but not (logically) valid according to
our definition of validity. All (logically) valid arguments are also con-
ceptually valid, but not the other way around.

Perhaps in everyday reasoning we are often judging arguments
whether they are conceptually valid as opposed to valid simpliciter.
However, while the cases of conceptual validity discussed have been rea-
sonably clear, it is sometimes not that easy to make precise and agree on
the exact underlying conceptual relations. Consequently, while, as we
shall see, it is relatively straightforward to decide whether an argument
is (logically), this becomes much more tricky turning to conceptual va-
lidity. For this reason it is preferable to focus on (logical) validity and
focus on what additional premises are needed to turn an intuitively con-
vincing argument into a valid argument. In a second step one can then
ask whether the additional premises are conceptual truths. If the an-
swer is yes, then we can deem the argument conceptually valid despite
being invalid in the strict sense of validity.

2.5 Ampliative Arguments

There is further reason why many arguments of everyday reasoning are
not strictly speaking valid: not all arguments of everyday reasoning are
so-called DEDUCTIVE arguments. In deductive arguments the truth of
the premises is supposed to guarantee the truth of the conclusion. Not
all good arguments are deductive and sometimes there are no plausible
missing premises you could add to someone’s argument to make it valid.



However, this doesn’t necessarily mean that the interlocutor was
wrong or mistaken. Deductively valid arguments with plausible
premises are good arguments, but they aren’t the only good arguments
there are. This is just as well, since many arguments we give in our
everyday lives are not deductively valid, even after filling in plausible
missing premises. Here’s an example:

In January 1997, it rained in London.
In January 1998, it rained in London.
In January 19qg, it rained in London.
In January 2000, it rained in London.
. Therefore: It rains every January in London.

el

This argument generalises from observations about several cases to
a conclusion about all cases—in each year listed, it rained in January, so
it does in every year. Such arguments are called INDUCTIVE arguments.
The argument could be made stronger by adding additional premises
before drawing the conclusion: In January 2001, it rained in London;
In January 2002.... But, however many premises of this form we add,
the argument will remain invalid. Even if it has rained in London in
every January thus far, it remains possible that London will stay dry
next January. The point of all this is that inductive arguments—even
good inductive arguments—are not (deductively) valid. They are not
watertight. The premises might make the conclusion very likely, but
they don’t absolutely guarantee its truth. Unlikely though it might be,
it is possible for their conclusion to be false, even when all of their
premises are true.

Inductive arguments of the sort just given belong to a species of
argument called AMPLIATIVE ARGUMENTS. This means that the conclu-
sion goes beyond what you find in the premises. That is, the premises
don’t guarantee, or entail, the conclusion. They do, however, provide
some support for it. These arguments are deductively invalid. They
may be good and useful, however it is important to know the differ-
ence.

In this book, we will set aside the question of what makes for a
good ampliative argument and focus instead on sorting the deductively
valid arguments from the deductively invalid ones. But we pause here
to mention some further forms of ampliative argument.

Inductive arguments, like the one we saw above, allow one to in-
fer from a series of observed cases to a generalization that covers them:
from all observed F's have been Gs, we infer all F's are Gs. We use these



all the time. Every time I've drunk water from my tap, it’s quenched
my thirst; therefore, every time I ever drink water from my tap, it will
quench my thirst. Every time I’ve stroked my neighbour’s cat, it hasn’t
bitten me; therefore, every time I ever stroke my neighbour’s cat, it
won’t bite me. And it’s a form of arguments much beloved by scien-
tists. Every time we’ve measured the acceleration of a body falling, it’s
matched Newton’s theory, therefore, all bodies are governed by New-
ton’s theory. The premises of these argument seem to make their con-
clusions likely without guaranteeing them. The areas of philosophy
called inductive logic or confirmation theory try to make precise what
that means and why it’s true. And of course inductive arguments can
go wrong. Before I visited Australia, every swan I'd seen was white, and
so I concluded that all swans were white; but when I visited Australia, I
realised my conclusion was wrong, because some swans there are black.

A closely related, but different form of argument, is STATISTICAL.
Here, we start with an observation about the proportion of Fs that are
Gs in a sample that we’ve observed, and we infer that the same propor-
tion of Fs are Gs in general. So, for instance, if I poll 1,000 people in
Scotland eligible to vote in a second independence referendum, and 600
say that they’ll vote yes, I might infer that 60% of all eligible voters will
vote yes. Or if I test 1,000,000 people in England for an active infection,
and 20,000 test positive, I might infer that 2% of the whole population
has an active infection. How good these argument are depends on a
number of things, and these are studied by statisticians. For instance,
suppose you picked the 1,000 Scottish voters entirely at random from
an anonymised version of the electoral register. But suppose that, when
you deanonymised, you learned that, by chance, all of the people youd
picked were over 65, or they all lived on the Isle of Skye. Then you
might worry that your sample, though random, was unrepresentative
of the population as a whole. This question is a genuine concern for
randomised controlled trials in medicine.

Abductive arguments provide an inference from a phenomenon
you’ve observed to the best explanation of that phenomenon: from E,
and the best explanation of E is H, you might conclude H. Again,
this is extremely widespread. A classic sort of example would be the
inferences that detectives draw during their investigations. They look
at the evidence and the possible explanations of it, and they tend to
conclude in favour of the best one. And similarly for doctors looking at
a patient’s suite of symptoms and trying to discover what ails them. An-
other important example comes from science. Here is Charles Darwin
explaining what convinces him of his theory of natural selection:



“It can hardly be supposed that a false theory would
explain, in so satisfactory a manner as does the theory of
natural selection, the several large classes of facts above
specified. It has recently been objected that this is an un-
safe method of arguing; but it is a method used in judging
of the common events of life, and has often been used by
the greatest natural philosophers.”

(Charles Darwin, On the origin of species by means of nat-
ural selection (6th ed.). London: John Murray)

Practice exercises

A.
1. What kind of things are valid or invalid?
2. When is an argument said to be valid?
3. When is an argument said to be sound?
B. Are the following valid? If it is invalid, describe a counterexample.

x. 1. Every good zoo has a giraffe.
2. It is a zoo.
.. Therefore: It has a giraffe.

1. Invalid. It is a zoo, but not a good one. (And has a giraffe.)

2. 1. Everyone in group 1 handed in their homework.
2. Jenny is in group 1.
". Therefore: Jenny handed in her homework.

1. If she won the lottery then she is rich.
2. She is rich.
". Therefore: She won the lottery.

3. 1. Most people are scared of spiders.
". Therefore: Oscar is scared of spiders.

4. 1. She is a donkey.
‘. Therefore: She does not talk.

C. Which of the following arguments is valid”? Which is invalid?



1. Socrates is a man.
2. All men are carrots.
. Socrates is a carrot.

1. Abe Lincoln was either born in Illinois or he was president.
2. Abe Lincoln was not president.
. Abe Lincoln was born in Illinois.

1. If I pull the trigger, Abe Lincoln will die.
2. I do not pull the trigger.
*. Abe Lincoln will not die.

1. Abe Lincoln was either from France or from Luxembourg.
2. Abe Lincoln was not from Luxembourg.
. Abe Lincoln was from France.

1. If the world were to end today, then I would not need to get up
tomorrow morning.

2. I will need to get up tomorrow morning.

". The world will not end today.

1. Joe is now 19 years old.
. Joe is now 87 years old.
". Bob is now 20 years old.

\}

D. Could there be:

1. A valid argument that has one false premise and one true
premise?

2. A valid argument that has only false premises?

3. A valid argument with only false premises and a false conclusion?

4. An invalid argument that can be made valid by the addition of a
new premise?

5. A valid argument that can be made invalid by the addition of a
new premise?

In each case: if so, give an example; if not, explain why not.
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CHAPTER 3

A
Prolegomenon
to TFL

In this part the lecture notes we start developing our theory of validity
and logical consequence, that is, we start introducing the logical lan-
guage. In §2 we already introduced the idea that an argument is valid, if
the truth premises of the guarantee the truth of the conclusion in virtue
of the (logical) form of the premises and the conclusion. It is this idea
that suggest to spell out an account of validity in a formal language,
that is, to conceive of the logical language as a formal language. This
will enable us to single out arguments that are valid in virtue of their
form and eventually make sense of the notion of an interpretation we
used in our definition of validity in §2. We can then give a rigorous for-
mal definition of validity of arguments in the formal language we shall
devise. This language will be the language of Truth-functional logic
(TFL).

Before we introduce the language of TFL, let us take a look at why
a formal language may be helpful for capturing validity of arguments,
i.e., the validity of arguments in virtue of their form.

Consider this argument:

1. It is raining outside.
2. If it is raining outside, then Jenny is miserable.
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.. Therefore: Jenny is miserable.
and another argument:

1. Jenny is an anarcho-syndicalist.

2. If Jenny is an anarcho-syndicalist, then Dipan is an avid reader
of Tolstoy.

.. Therefore: Dipan is an avid reader of Tolstoy.

Both arguments are valid, and there is a straightforward sense in which
we can say that they share a common structure. We might express the
structure thus:

1. A
2. If A, then B
.. Therefore: B

This looks like an excellent argument structure. Indeed, surely any ar-
gument with this structure will be valid.
What about:

1. Jenny is miserable.
2. If it is raining outside, then Jenny is miserable.
.. Therefore: It is raining outside.

The form of this argument is:

1. B
2. If A then B
.. Therefore: A

Arguments of this form are generally invalid.

Be careful, though, not every argument of this form is sure to be
invalid. It’s possible to have an argument of this form that’s valid — see
if you can work out how! But most arguments of this form are invalid.

There a lot more valid argument forms. For example the argument
form

1. AorB
2. not-A
.. Therefore: B

as well as the form

1. not-(A and B)



2. A
.. Therefore: not-B

lead to valid arguments independently of what expressions we substi-
tute for ‘A’ and ‘B’: we can understand (interpret) ‘A’ and ‘B’ in whatever
way we want, as long as we take them to be place holder for sentences
the resulting arguments the resulting argument will be valid. These ex-
amples illustrate the important idea that the validity of the arguments
just considered has nothing to do with the meanings of English expres-
sions like Jenny is miserable’, ‘Dipan is an avid reader of Tolstoy’, or
any other sentence. If it has to do with meanings at all, it is with the
meanings of conjunction-words like ‘and’, ‘or’, ‘not,’ and ‘if. .., then...’ .
The language of truth-functional logic is built to single out characteris-
tic feature of these conjunction words and this will enable us to fruitfully
study the idea of validity of an argument in virtue of its form.

When one introduces a language there are (at least) two task: the
first is to specify the vocabulary of the language and equip the language
with a grammar, that is, one has to specify how wellformed sentences
of the language look like. This aspect of the language is called its
SYNTAX. The second task is to specify the SEMANTICS of the language.
The semantics specifies how we are to understand the expressions of
the language, what the sentences of the language mean etc. Part II
develops both the syntax and the semantics of the language of TFL.
Once this has been established we can consider how TFL may be useful
for thinking about arguments in English. This will lead to the idea of
symbolizing arguments in TFL and will be picked up in Part 1q.



CHAPTER 4

Syntax of

4.1 Atomic sentences

We started isolating the form of an argument by replacing subsentences
of sentences with individual letters. Thus in the first example of this
section, ‘it is raining outside’ is a subsentence of ‘If it is raining outside,
then Jenny is miserable’, and we replaced this subsentence with ‘4’.

Our artificial language, TFL, pursues this idea absolutely ruthlessly.
We start with some atomic sentences. These will be the basic building
blocks out of which more complex sentences are built. We will use
uppercase Roman letters for atomic sentences of TFL (except for X, ¥,
and Z which we reserve for metavariables). There are only twenty-three
letters A—W , but there is no limit to the number of atomic sentences that
we might want to consider. By adding subscripts to letters, we obtain
new atomic sentences. So, here are five different atomic sentences of
TFL:

A, P, Py, Py, Ag3y

You can think of atomic sentences as representing certain English sen-
tences but for now this is simply a heuristic (in Part ?? we shall take
atomic sentences to symbolize certain English sentence). For example,
you can think of A4 as representing the English sentence ‘It is raining
outside’, and the atomic sentence of TFL, C, as representing the English
sentence ‘Jenny is miserable’.
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However, if you think of the letter P as representing a particular
English sentence it is important to understand that whatever structure
the English sentence has, atomic sentence P will not reflect this struc-
ture. From the point of view of TFL, an atomic sentence is just a letter.
It can be used to build more complex sentences, but it cannot be taken
apart.

4.2 Connectives

In the previous section, we introduced the atomic sentences of TFL. In
TFL we have counterparts to the conjunction-words that play an impor-
tant role for spelling out arguments in English, that is, in TFL we have
expression that play a similar role to the role expressions like ‘and’, ‘or’
and ‘not’ play in English. These are the connectives—they can be used
to form new sentences out of old ones. In TFL, we will make use of log-
ical connectives to build complex sentences from atomic components.
There are five logical connectives in TFL. This table summarises them,
and they are explained throughout this section.

symbol what it is called rough meaning

- negation ‘It is not the case that...’
A conjunction ‘..and...,

\ disjunction ‘..or...

- conditional If ... then ...~

If we were to substitute declarative sentences for “...” in the right
hand column of the table above, we obtain new English sentences. The
language of truth-functional logic works in the same way: the connec-
tives ‘=",‘A’,°V’ and ‘—’ combine with sentences as introduced in §4.1
to form new sentences. For example, the atomic sentences ‘4’ and ‘C’
combine with ‘A’ to form the sentence ‘4 A C’. If think of ‘4’ and ‘C’

as representing the English sentences

A: It is raining outside
C: Jenny is miserable

‘A A C’ can be read as:
> It is raining and Jenny is miserable.

Similarly, on this understanding we get the following readings:



> —4: It is not the case that it is raining outside. (Alternatively, it
is not raining outside).

> AV C: It is raining outside or Jenny is miserable.
> A — C: If it is raining outside, ¢then Jenny is miserable.

We shall go back to studying the connection between the connectives
of truth-functional logic and various conjunction-words of English in
§6.1, when we discuss the precise meaning of the connectives in truth-
functional logic. For now we focus on completing the description of the
formal language of truth-functional logic.

To conclude our discussion of the connectives we focused on the
application of the connectives to atomic sentences, but connectives can
be applied to all sorts of sentences not only atomic sentences. For
example, as -4 is a TFL sentence we can use ‘A’ to conjoin it the
sentence ‘C’ to form the new sentence ‘(=4 A C)’. Connectives can be
applied to all TFL sentences, not only atomic sentences. It is time to
say precisely what TFL sentences are.

4.3 Sentences

We have introduced the basic building blocks of truth-functional logic,
the atomic sentences, and the connectives, which allow us to conjoin
different sentences to form new sentences. In terms of the VOCABULARY
of a (written) language we have introduced all the important parts save
the punctuation marks. In the language of truth-functional logic we use
brackets for this purpose.

What is still missing is to equip the language with a GRAMMAR. The
purpose of the grammar is to distinguish wellformed sentences from
nonsense, but also to avoid ambiguity.

We wish to have rules that guarantee that

(Av (BACQG))
-(A A B)
are wellformed sentences of the language of truth-functional logic, while

AANVB —

is not. The latter expression is nonsense just as in English the sequence
of words



The and dog brown or is.

is nonsense and not a sentence of English.
The second purpose is to avoid ambiguity. In English we use com-
mas to distinguish between two sentences

1. John’s tired, and Sue’s tall or Rob’s short.
2. John’s tired and Sue’s tall, or Rob’s short.

and without a comma it would be unclear which of the two sentences
we intend to convey. In TFL this job of punctuation marks is assumed
by brackets, that is, we distinguish between:

(AN (BV Q)
((AnB)vC(C)

You can think of the former TFL-sentence as representing the English
sentence 1, whereas the latter as representing the English sentence 2.
You might know this use of brackets from mathematics:

3. 9+3x4
can either be read as:

4. 9+ (3x4) (=9+12=21)
5 (9+3) x4 (=12x4 =48)

Importantly, the language of TFL is designed to exclude any form
of ambiguity. For example, AA BV C will not be a sentence of TFL, as it
would require disambiguation. Rather the syntactic/grammatical rules
of the language of TFL will be such that only expressions that have a
unique reading can be sentences of TFL. To make this precise we now
provide a formal definition of what it is to be a sentence in TFL.

1. Every atomic sentence is a sentence.

2. If X is a sentence, then =X is a sentence.

If X and Y are sentences, then (X A Y) is a sentence.
If X and Y are sentences, then (X V Y) is a sentence.

If X and Y are sentences, then (X — Y) is a sentence.

SAI AT S

Nothing else is a sentence.




The definition specifies rules according to which sentences of the
language can be formed. To understand this definition let us pick it
apart and consider the rules individually.

1. Tells us that atomic sentences as discussed in §4.1 are sentence of
TFL.

Recall that any uppercase Roman letters A-W, or with subscripts, e.g.,

A1, Bs, A100, J375, are atomic sentences of TFL. Notice X, Y, and Z are

not atomic sentences. They are so-called METAVARIABLES and used as

place holders for sentences of TFL (see more on metavairables in §5).
Our second rule says:

2. If X is a sentence of TFL, then so is = X.

By rule 1, we know that 4 is a sentence. Rule 2 then allows us to
conclude that —4 is also a sentence. We could then apply it again and
conclude that =—4 is also a sentence. More generally, if, by whatever
rule we have a constructed a sentence X, Rule 2 tells us that =X will
also be a sentence of TFL.

FORMATION TREES help us keep track of this process. For the case
of =4 this would be:

ﬂ—|A

-4

A

Our third rule says:
3. If X and Y are sentences, then so is (X A Y).

By rule 1, By and D are both sentences. So rule 3 allows us to conclude
that (B; A D) is a sentence. We might then apply rule 2 to conclude
that —(B; A D) is also a sentence.

- (B1 AD)

(B1 AD)

/\
Bi D



The rules 4 and 5 then tell us how the V- and —-connective respec-
tively can be used to produce new sentences of TFL. Rule 6, in contrast,
tells us that sentences of TFL must be formed using the rules 1-5: if an
expression cannot be obtained by consecutively applying rules 1-5, then
the expression is not a sentence of TFL. Again formation trees are help-
ful to understand this: rule 7 tells us that all nodes of the formation tree
must be sentences of TFL.

For example, consider (A A (BV C)) we can check this is a sentence
by drawing the following formation tree:

(AN(BV D))

/N

A (BVv()

/\
B ¢

Each of the steps here tracks one of the rules of what it is to be a
sentence. So we can conclude that this is a sentence of TFL. This
also helps us see how to read it. It has a different formation tree from
((AAB) Vv C):

((4AB) v €))

/ N\

(AANB) C

/\
A B

The different formations will be important when we describe truth-
tables for these sentences (§6.1). ((A A B) Vv C) and ((4 A B) vV (C)
will differ in when they are true.

One more example: consider —(P A =(—=Q V P)) we can check this
is a sentence by drawing the following formation tree:



- (P A —|(—|Q VP))

(P A=(=QVP))

/N

P - (-QVP)
/ \
-Q P
|
0

each of the steps here tracks one of the rules of what it is to be a sen-
tence. So we can conclude that this is a sentence of TFL. The sentences
further up the tree are formed by one of the formation rules from the
sentences further down the tree.

When drawing these trees we have highlighted a particular connec-
tive on each of our nodes. We call that connective the MAIN CONNEC-
TIVE of the sentence.

The MAIN CONNECTIVE of sentence is the last connective that
was introduced in the construction of the sentence.

In the case of ((=E V F) — —-—G), the main connective is —. Here
we can see that the whole sentence can be described in the form (X —
Y) with both X and Y being complete sentences (put X = (—E V F)
and Y = -~G). That’s enough to see that — is the main connective. In
the case of -——D, the main connective is the very first - sign. This is
because we can see the sentence as having the form —X with X being
the complete sentence ~—D. In the case of (P A =(—~Q V R)), the main
connective is A: it’s an (X AY) with X as P and Y as =(-Q V R).

Inductive Definition

The definition of a TFL-sentence is a so-called inductive definition.
Inductive definitions begin with some specifiable base elements, and
then present ways to generate indefinitely many more elements by com-
pounding together previously established ones. To give you a better
idea of what an inductive definition is, we can give an inductive defini-
tion of the idea of an ancestor of mine. We specify a base clause.

¢ My parents are ancestors of mine.



and then offer further clauses like:

e If x is an ancestor of mine, then x’s parents are ancestors of mine.
¢ Nothing else is an ancestor of mine.

Using this definition, we can easily check to see whether someone is my
ancestor: just check whether she is the parent of the parent of...one
of my parents. And the same is true for our inductive definition of
sentences of TFL. Just as the inductive definition allows complex sen-
tences to be built up from simpler parts, the definition allows us to
decompose sentences into their simpler parts. Once we get down to
atomic sentences, then we know we are ok.

4.4 Bracketing conventions

Strictly speaking, 4 A B is not a sentence of TFL. When we introduce a
connective A,V or —, strictly speaking, we must include brackets. Only
(A A B) is strictly speaking a sentence of TFL. The reason for this rule
is that we might use (4 A B) as a subsentence in a more complicated
sentence. For example, we might want to negate (4 A B), obtaining
—(A A B). If we just had 4 A B without the brackets and put a negation
in front of it, we would have =4 A B. It is most natural to read this
as meaning the same thing as (-4 A B), but this may be very different
from —(A4 A B).

When working with TFL, however, it will make our lives easier if
we are sometimes a little less than strict. So, here are two convenient
conventions.

1. We can remove outermost brackets of a sentence. Thus we allow
ourselves to write 4 A B instead of the sentence (4 A B). However,
we must remember to put the brackets back in, when we want to
embed the sentence into a more complicated sentence!

2. It can be a bit painful to stare at long sentences with many nested
pairs of brackets. To make things a bit easier on the eyes, we
will allow ourselves to use square brackets, " and I, instead of
rounded ones. So there is no logical difference between (P V Q)
and [P V Q], for example.

Combining these two conventions, we can rewrite the unwieldy sen-
tence
((H—->1)v{ - H)A(JVK))



rather more clearly as follows:
[(H->D) v > H)]A(JVEK)

The scope of each connective is now much easier to pick out.

Practice exercises

A. For each of the following: (a) Is it a sentence of TFL, strictly speak-
ing? (b) Is it a sentence of TFL, allowing for our relaxed bracketing
conventions? (c) If the answer to (b) is yes, write down the formation
tree of each sentence and determin the main connective at each node (if
there is one). Is there a main connective for every node of the formation
tree of a sentence.

(4)
SJ374 VY 2 J374

_|_|_|_|F

-AS

(G A=G)

(A—> (AAN=F))V (D> E)
[(Z->8)->W]A[JVX]
(F—>-D— J)V(CAD)

PN ST P

B. Are there any sentences of TFL that contain no atomic sentences?
Explain your answer.



CHAPTER 5

Use and

mention

We have talked a lot about sentences. So we should pause to explain an
important, and very general, point.

5.1 Quotation conventions
Consider these two sentences:
> Justin Trudeau is the Prime Minister.

> The expression Justin Trudeau’ is composed of two uppercase
letters and eleven lowercase letters

When we want to talk about the Prime Minister, we use his name. When
we want to talk about the Prime Minister’s name, we mention that name,
which we do by putting it in quotation marks.

There is a general point here. When we want to talk about things
in the world, we just use words. When we want to talk about words,
we typically have to mention those words. We need to indicate that
we are mentioning them, rather than using them. To do this, some
convention is needed. We can put them in quotation marks, or display
them centrally in the page (say). So this sentence:

> ‘Justin Trudeau’ is the Prime Minister.
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says that some expression is the Prime Minister. That’s false. The man
is the Prime Minister; his name isn’t. Conversely, this sentence:

> Justin Trudeau is composed of two uppercase letters and eleven
lowercase letters.

also says something false: Justin Trudeau is a man, made of flesh rather
than letters. One final example:

> “‘Justin Trudeau’” is the name of Justin Trudeau’.

On the left-hand-side, here, we have the name of a name. On the right
hand side, we have a name. Perhaps this kind of sentence only occurs
in logic textbooks, but it is true nonetheless.

Those are just general rules for quotation, and you should observe
them carefully in all your work! To be clear, the quotation-marks here
do not indicate reported speech. They indicate that you are moving
from talking about an object, to talking about a name of that object.

5.2 Object language and metalanguage

These general quotation conventions are very important for us. After
all, we are describing a formal language here, TFL, and so we must
often mention expressions from TFL.

When we talk about a language, the language that we are talking
about is called the OBJECT LANGUAGE. The language that we use to talk
about the object language is called the METALANGUAGE.

For the most part, the object language in this chapter has been
the formal language that we have been developing: TFL. The meta-
language is English. Not conversational English exactly, but English
supplemented with some additional vocabulary to help us get along.

Now, we have used uppercase letters as sentence letters of TFL:

A,B,C,Z,A1,By, Ass, [375,. .

These are sentences of the object language (TFL). They are not sen-
tences of English. So we must not say, for example:

> D is a sentence letter of TFL.

Obviously, we are trying to come out with an English sentence that
says something about the object language (TFL), but ‘D’ is a sentence
of TFL, and not part of English. So the preceding is gibberish, just like:



> Schnee ist weil} is a German sentence.
What we surely meant to say, in this case, is:
> ‘Schnee ist weil}’ is a German sentence.
Equally, what we meant to say above is just:
> ‘D’ is a sentence letter of TFL.

The general point is that, whenever we want to talk in English about
some specific expression of TFL, we need to indicate that we are men-
tioning the expression, rather than using it. We can either deploy quota-
tion marks, or we can adopt some similar convention, such as placing
it centrally in the page.

5.3 Metavariables

However, we do not just want to talk about specific expressions of TFL.
We also want to be able to talk about any arbitrary sentence of TFL.
Indeed, we had to do this in §4.3, when we presented the recursive
definition of a sentence of TFL. We used uppercase script letters to do
this, namely:

XY, Z,Xxi,nh,Z, ...

These symbols do not belong to TFL. Rather, they are part of our
(augmented) metalanguage that we use to talk about any expression
of TFL. To explain why we need them, recall the second clause of the
recursive definition of a sentence of TFL:

o. If X is a sentence, then =X is a sentence.
This talks about arbitrary sentences. If we had instead offered:
o’. If ‘A’ is a sentence, then ‘=4’ is a sentence.

this would not have allowed us to determine whether ‘=B’ is a sentence.
To emphasize:

‘X’ is a symbol (called a METAVARIABLE) in augmented English,
which we use to talk about expressions of TFL. ‘4’ is a particular
sentence letter of TFL.




But this last example raises a further complication, concerning quo-
tation conventions. We did not include any quotation marks in the
second clause of our inductive definition. Should we have done so?

The problem is that the expression on the right-hand-side of this
rule, i.e., ‘=X, is not a sentence of English, since it contains ‘—’. So we
might try to write:

o’  If X is a sentence, then ‘=X is a sentence.

But this is no good: ‘=X’ is not a TFL sentence, since ‘X’ is a symbol
of (augmented) English rather than a symbol of TFL.
What we really want to say is something like this:

o’”. If X is a sentence, then the result of placing the symbol ‘—’ in
front of the sentence X is a sentence.

This is impeccable, but rather long-winded. But we can avoid long-
windedness by creating our own conventions. We can perfectly well
stipulate that an expression like ‘-X’ should simply be read directly
in terms of rules for concatenation. So, officially, the metalanguage
expression ‘—X’ simply abbreviates:

the result of placing the symbol ‘=’ in front of the sentence
X

and similarly, for expressions like ‘(X A Y)’, (X VY)’, etc.

5.4 Quotation conventions for arguments

One of our main purposes for using TFL is to study arguments, and
that will be our concern in §6.1. In English, the premises of an argument
are often expressed by individual sentences, and the conclusion by a
further sentence. Since we can symbolize English sentences, we can
symbolize English arguments using TFL.

Or rather, we can use TFL to symbolize each of the sentences used
in an English argument. However, TFL itself has no way to flag some
of them as the premises and another as the conclusion of an argument.
(Contrast this with natural English, which uses words like ‘so’, ‘there-
fore’, etc., to mark that a sentence is the conclusion of an argument.)

So, we need another bit of notation. Suppose we want to symbolize
the premises of an argument with Xj, ..., X, and the conclusion with
Z. Then we will write:

X1,.... X, . Z



The role of the symbol “.".” is simply to indicate which sentences are the
premises and which is the conclusion.

Strictly, the symbol ..” will not be a part of the object language,
but of the metalanguage. As such, one might think that we would need
to put quote-marks around the TFL-sentences which flank it. That is
a sensible thought, but adding these quote-marks would make things
harder to read. Moreover—and as above—recall that we are stipulating
some new conventions. So, we can simply stipulate that these quote-
marks are unnecessary. That is, we can simply write:

AA—B. B

without any quotation marks, to indicate an argument whose premises are
(symbolized by) ‘4’ and ‘4 — B’ and whose conclusion is (symbolized
by) ‘B’. In this Part, we have talked a lot about sentences. So we should
pause to explain an important, and very general, point.

Practice exercises

A. Add quotation marks to the following sentences where necessary:

1. =,A,V, and — are the basic logical connectives of the language
of TFL.

2. In a wellformed sentence for every opening bracket ‘(’ there must
be a closing bracket ).

3. The sentence snow is white is true if and only if snow is white.

4. Kevin is a lecturer, whereas Kevin names Kevin and the latter is
an expression of the language (and not a lecturer).

B. Given our convention on metavariables what do the following ex-
pressions convey:

1. XAY
2. Y > Z
3. (YVZ)
C. Consider the sentence
> Sharky is so-called because of his teeth.

Is ‘Sharky’ used or mentioned in the above sentence? Discuss.



Semantics of
1TFL

6.1 Truth and Truth tables

We have completed introducing the syntax of the language of TFL. It
is now time to turn to the semantics of TFL. The idea underlying the
semantics is to specify conditions under which sentences of TFL are
true. In §4 we introduced the idea that an argument is lvalid if there
is no interpretation on which all premises of the argument are true but
the conclusion false. Accordingly, if we wish to make a start on making
this idea more precise, we need to say when a sentence of TFL is true
according to an interpretation and when it is false. The target of this
chapter is to give precise rules to this effect. The important feature of
truth functional logic is that the truth value of a complex sentence, such
as ‘AV (B AC)’ is fully determined by the truths of is component parts,
that is ‘4’, ‘B’ and ‘C’. If we're told whether ‘4’, ‘B’ and C are true or
false, then we will be able to say whether ‘4 Vv (B A C)’ is true or false.

To pell out this idea,, we need to describe how the truth values of
different sentences (e.g., ‘4’, ‘B’, and ‘C’) are to be combined to obtain
the truth value of a sentence that has been obtained via the formation
rules 2-5 (e.g., ‘4 V (B A C)’). To do this we work through each of our
connectives describing the rules governing it.
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Negation

The ‘=’-connective is called negation. When we introduced the ‘-’-
connective we said it should roughly be understood as ‘it is not the

case’ or, perhaps, simply ‘not’. Let’s make that official:

If a sentence can be paraphrased as ‘it is not the case that ...
it can be symbolised as —.X.

What does that mean for the truth rules? Consider:

1. Bristol is not in France.
2. Bristol is not in England.

‘Bristol is in France’ is false, so ‘Bristol is not in France’ is true. ‘Bristol
is in England’ is true, so ‘Bristol is not in England’ is false.

In general, to determine whether a sentence of the form =X is true
we check whether X is false. If the answer is yes, then —X is indeed
true. If to the contrary X is true, then —X is false:

> If X is true, then =X is false.
> If X is false, then =X is true.

We record this in shorthand:

If X is: then —X is:
T ~ F
F ~ T

We have abbreviated “True’ with “I” and ‘False’ with ‘F’. (But just to
be clear, the two truth values are True and False; the truth values are
not letters!)

Conjunction

The A-connective, called conjunction, is meant to be understood of the
English word ‘and’:

If a sentence can be paraphrased as ‘...and...’
it can be symbolised as (X A Y).




What is the appropriate truth rule for conjunction? Consider:
3. She can speak German and she can speak French.

If she can speak German and she can speak French, then this is true,
but otherwise it is false.
More generally, the rule governing A is:

> If X and Y are both true, then X A Y is true.
> Otherwise, X A Y is false.

Which we summarise

If Xis: andY is: then (X AY) is:
T T ~ T
T F ~ F
F T ~ F
F F ~ F

Note that conjunction is symmetrical. The truth value for (X AY) is
always the same as the truth value for (¥ A X).

Disjunction

The “v’-connective is called disjunction and is meant to be understood
in terms of the English ‘or’.

’

If a sentence can be paraphrased as “...or ...
it can be symbolised as (X vV Y).

Whereas the truth rules for the negation and conjunction were rel-
atively straightforward, the rule for disjunction is a bit more subtle.
Consider:

4. She can speak German or she can speak French.

If she cannot speak either German or French, then this is false. If she
can speak German but not French, then it is true, and if she can speak
French but not German it is also true. We have the general rules:

> If X and Y are both false, then (X Vv Y) is false.



> If X is true and Y is false, then (X V Y) is true.
> If X is false and Y is true, then (X V Y) is true.

But what if she can speak both? Is it true or false? It seems that
in English there are two kinds of disjunctions: an INCLUSIVE and an
EXCLUSIVE one. For the inclusive or, we might whisper a “or both” after
it; whereas for the exclusive or, wed want to whisper a “but not both”:

5. She speaks German or she speaks French (or both).
6. She speaks German or she speaks French (but not both).

In logic there can be no ambiguity. We choose that Vv stands for the
inclusive or. That is, we give the final rule:

> If X and Y are both true, then (X VvV Y) is true.

Once we have completed our presentation of the semantics for. TFL
we will see that more complex sentence: ((X VY) A —(X AY)) has the
truth conditions of the exclusive or, that is it is true if X is true or Y is
true but not both X and Y are true.

To summarise the rules for V:

If Xis: and7Y is: then (X VY) is:
T T ~ T
T F ~ T
F T ~> T
F F ~> F

Like conjunction, disjunction is symmetrical.

Conditional

The ‘“—’-connective is called the conditional-connective and it is meant
to be related to our understanding of if.., then... sentences. Here, P
is called the ANTECEDENT of the conditional (P — Q), and Q is called
the CONSEQUENT.

If a sentence can be paraphrased as
‘If ..., then ... it can be symbolised as (X — Y).

What are the truth rules for the conditional? Consider the sentence:



7. If she is drinking a beer, then she is over eighteen.

What are the circumstances under which this conditional is false? Here
is what we’ll say:

> If she’s drinking beer and is under age, then it is false.
> It is true in all other circumstances.

To understand the rationale for this, let us think about when a bar-
tender would get into trouble (clearly the conditional should be true
for everyone drinking beer in a bar). They will get into trouble in case
there a woman in drinking beer and it turns out that the woman is un-
der age. They will not get into trouble if the woman is over 18 years
old, i.e., if the consequent of the conditional is true. They will also not
get in trouble if it turns out that the woman is not drinking beer (but
orange juice), i.e., if the antecedent of the conditional is false. In that
case it is irrelevant whether she is 18 or not. The barkeeper doesn’t
have to check her age. The conditional is true for trivial reasons.
We are led to the following rules:

If Xis: andY is: then (X —» Y) is:
T T ~ T
T F ~ F
F T ~ T
F F ~ T

In this case, it’s very important to remember which way around it
goes. The TF-line is different to the FT-line.
This is why the terms ‘antecedent’ and ‘consequent’ are so useful.

In X — Y, X is called the ANTECEDENT, and Y the CONSE-
QUENT.

Using the antecedent/consequent terminology we can summarize
the truth rule as follows: If the antecedent is true and the consequent
false, then the conditional sentence is false, otherwise it is true.

The TFL connective — is stipulated to be governed by these rules.
This sometimes marked by calling it the MATERIAL CONDITIONAL. But
the truth rules of the —-connective only tell us part of the story of if ..,
then... sentences in English, as the truth rules do not seem to work well



for all these sentences. For example, truth rules for material implication
do not seem to work well with our understanding of the sentence

8. If Kangaroos had no tails, they would topple over.

We will discuss conditional-sentences of this kind in §9.1 and will look
at some problems arising due to understanding — in terms of material
implication in §??. However, for our purposes —-connective will be
understood in terms of truth rules given in this section.

6.2 Truth

In the previous section we have learned how truth values of constituent
sentences determine the truth value of complex sentences. This means
that if we are presented with the truth value of the relevant atomic
sentences that appear in a complex sentence, we can determine whether
that sentence is true or false.

But how do we determine whether a given atomic sentence is true?
This is where the notion of an interpretation comes into the picture. An
interpretation will stipulate (assign) truth values of particular atomic
sentences. Let ‘B’ stand for the English sentence ‘Ben is happy’. Then
there is one interpretation according to which this is true, that is, B will
be assigned the value “True” on this interpretation. There is another
interpretation according to which Ben is not happy, that is, B is assigned
the value “False” on this interpretation. In TFL an interpretation of the
atomic sentences is called a VALUATION:

A VALUATION is any assignment of truth values to the atomic
sentences of TFL.

To better grasp what a valuation is, it makes sense to look at the
TRUTH TABLE of the sentence ‘4 A B’, which looks as follows (from now
on, in contrast to §6.1, we no longer display the explanatory text, and
replace ~» by a vertical line):

| AAB

oo o
o=
o >



Now the first two rows of every horizontal line in the above table
specify a valuation for the atomic sentence 4 and B: according to the
valuation given by the first line both 4 and B are true, according to the
valuation given by the second line 4 is true but B is false, and so on.
Let use v1,09,... as names for different valuations, then we can make
valuations explicit in the truth table above:

Valuation ‘ A B ‘ AANB

u T T T
) T F F
v3 F T F
U4 F F F

The truth table then tells us that ‘4 A B’ is true relative to the valu-
ation 1, but false relative to the vy,v3, and v4. We can generalize idea
and give an inductive definition of when A SENTENCE OF TFL IS TRUE
RELATIVE TO A GIVEN VALUATION. The definition specifies rules to com-
pute the truth of sentence for every formation rule of the definition of
a TFL sentence.

Let v be a valuation. Then

1. An atomic sentence X is true relative to v, if and only if
v assigns the value T to X.

2. a sentence —.X is true relative to v, if and only if X is not
true relative to v.

3. a sentence (X A Y) is true relative to v, if and only if X
and Y are both true relative to v.

4. a sentence (X V Y) is true relative to v, if and only if X
or Yis true relative to v.

5. a sentence (X — Y) is true relative to v, if and only if X
is not true or Y is true relative to v

Let’s go through the five rules of the definition step by step. The first
rule should be relatively immediate: an atomic sentence is true relative
to a valuation, if and only if the valuation says it has value “True”. For
rule 2, we look at the truth table for negation: the truth table tells us
that a sentence —X is true whenever X is false (not true). That is, =X
is true relative to a valuation, if X is not true (false) relative to that



valuation. For the case of conjunction, we can revisit the discussion we
used to motivate talking about truth relative to a valuation. We say that
the conjunction ‘4 A B’ was only true relative to the valuation vy, that is,
the valuation relative to which both ‘4’ and ‘B’ are true. Our reasoning
was not specific to the specific conjunction ‘4 A B’ but applicable to all
sentences of the form X A Y with arbitrary conjuncts X and Y.

For the fourth rule we need to look at the truth table for disjunction:

X Y |XvY

T T T
T F T
F T T
F F F

According to the truth table X VY is true on lines 1-3, that is, inspecting
these three lines one can see that it suffices for X or Y to be true for
X VY to be true. This is precisely what the third rule says.

For the conditional (rule 5) we also reexamine the truth table X —
Y:

X Y |X->Y
T T T
T F F
F T T
F F T

According to the truth table a sentence X — Y is true on line 1, 3, and
4. Let’s check whether the rule is correct: X — Y has to be true, if and
only if X is false or Y is true. If X is false, we are either in line 3 or
in line 4, but in both lines X — Y turns out true. If Y is true, we are
either in line 1 or line g of the truth table and X — Y is true in both
lines. So rule 5 is correct.

With the definition in place we can now determine whether an ar-
bitrary sentence of TFL is true relative to a given valuation ». This
requires giving the COMPLETE TRUTH TABLE for this sentence. For ex-
ample, consider the sentence A A (B Vv C). This sentence has 3 atomic
sentences which means that there are 23 different ways to assign truth
values to the three atomic sentences, which in turn means that there
are 2% valuation to consider in the complete truth table:
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To give the complete truth table of this sentence we first need to
give the truth table for B v C using the truth rule for disjunction:

BvC

=

oo
HmH RS A
R RS RS R Fo)

CRERERS RN

The final step in the construction of the truth table is to combine the
columns of 4 and BV C and to compute the truth values of AA (BV C).
We get the following truthtable:

A B C|BVC | AA(BVCO)
T T T T T
T T F T T
T F T T T
T F F F F
F T T T F
F T F T F
F F T T F
F F F F F

By inspecting the truth table we see that ‘4 A (BV C)’ is true relative
relative to an interpretation v if and only if ‘4’ is true relative relative to
v and at least one of ‘B’ and ‘C” is also true relative to ». To this effect
we only need to check the lines 1,2, and 3 of the truth table, as these are
the only lines in which ‘4A (BV C)’ is true. Using the above strategy we



can construct truth tables for all sentences of TFL. Given a truth table
for some sentence of TFL it is easy to check under which conditions
(valuations) the sentence is true (false). In §6.4 we will provide and
discuss a How to guide for constructing complete truth tables.

6.3 Validity and other logical notions

In §2 we said that an argument was valid, if and only if there is no
interpretation such that all premises are true but the conclusion false.
At that point the definition was suggestive, but we lacked a clear un-
derstanding of ‘interpretation’ and when a sentence is true relative to
an interpretation. But for the language of TFL we can now turn the
informal definition in a precise and rigorous definition.

Recall that an argument consisted of a number of premises together
with a conclusion. A TFL-argument then can be written as Xj,..., X, ..
Y where Xi,...,X,,Y are sentences of TFL, and Xi,...,X, are the
premises and Y the conclusion of the argument.

A TFL-argument Xj,...,X, .. Y is vALID if and only if there is
no valuation v such that Xj is true relative to » and ... and X,
is true relative to v, but Y is false relative to v.

We can now investigate whether a TFL-argument is valid or not.
The difficult bit is to show that there is no valuation on which all
premises are true but the conclusion false. After all there are many
different valuations. Fortunately, only the atomic sentences that occur
in the premises and the conclusion of the argument will be relevant for
deciding whether an argument is valid or not. Consider the argument:

-B,A— B .. -4

In this case there are only four different ways to assign truth values to
4 and B, that is, we only need to consider four valuation. This means
that we can check whether the argument is valid via the following truth
table:

Valuation ‘ A B ‘ -B ‘ A— B H -4
1 T T| F T F
V9 T F| T F F
v3 F T| F T T
vy F F| T T T



In the truth table we have used the truth table for negation to com-
pute the truth value of =B (—A) from B (4) and the truth value of the
conditional to obtain the value of 4 — B from the values of 4 and B.
By inspecting the truth table we see that only relative to valuation v, all
the premises of the argument (—B and 4 — B) are true. But relative to
v4 the conclusion —4 is true likewise. There is no valuation relative to
which all premises are true, but the conclusion false. The argument is
valid.

Unfortunately, when we consider arguments that involve more
atomic sentences we need to consider more valuations: for n atomic
sentences there are 2" different options for assigning truth values to
these atomic sentences, that is we need to consider 2" different valu-
ations. Hence, the more atomic sentences one needs to consider the
longer the truth tables will be. Fortunately, there is a straightforward
strategy that makes it easy to find all the different valuations.

How to find all valuations

In order to fill in the columns of a complete truth table, begin
with the right-most atomic sentence and alternate between ‘I’
and ‘F’. In the next column to the left, write fwo “T’s, write two
‘F’s, and repeat. For the third atomic sentence letter, write four
“T’s followed by four ‘F’s. This would yields an eight line truth
table. For a 16 line truth table, the next column of sentence
letters should have eight ‘“T’s followed by eight ‘F’s. For a 32 line
table, the next column would have 76 ‘T’s followed by 16 ‘F’s,
and so on

It is worth highlighting a peculiar feature of the definition of validity:
there are valid arguments without a premise. Consider the argument

S AV —A.

The argument is valid if there is no valuation such that all premises
are true but the conclusion false, that is, if there is no valuation such
that 4 vV -4 is false. This can be quickly verified as there are only two
valuations to consider:

Valuation ‘ A ‘ -4 H -AV A
" T| F T
V9 F| T T



AV =4 is true on both »; and vy. The argument is valid. The
conclusions of arguments with no premises are called LOGICAL TRUTHS
or TAUTOLOGIES.

A TFL-sentence X is called a LOGICAL TRUTH or TAUTOLOGY if
and only if the TFL-argument .. X is valid.

A logical truth is a TFL-sentence that is true relative to every valua-
tion. Alternatively, one can say that a TFL sentence is a logical truth if
and only if it is a LOGICAL CONSEQUENCE of (FOLLOWS FROM) any TFL
sentence (Exercise: explain why).

Y is a LOGICAL CONSEQUENCE of Xj,...,X, if and only if the
argument Xj,...,X, .. ¥ is valid.

Notice one important difference between validity and consequence:
the former is a property of TFL-arguments while the latter is a property
of TFL-sentences!

A logical truth follows from every sentence. In contrast, every sen-
tence follows from a LOGICAL CONTRADICTION.

X is a LOGICAL CONTRADICTION if and only if there is no valu-
ation v such that X is true relative to v.

Every sentence Y follows from a contradiction X, since X .. Y is
valid: there is no valuation on which X is true (and Y false).

We end this section by introducing three further important logical
notions: CONSISTENCY, CONTINGENCY and LOGICAL EQUIVALENCE.

A collection of TFL-sentences Xj,...,X, (with possibly z = 1)
is CONSISTENT iff there is a valuation relative to which Xi,..., X,
are true. Otherwise the collection is INCONSISTENT.

A sentence of TFL is called CONTINGENT. If it is part of a
consistent collection and not a logical truth.

Any collection of sentences that contains a logical contradiction is
inconsistent, and so a logical contradiction is not a contingent sentence.
A contingent sentence is a sentence for which we can find a valuation



relative to which it is true, but we can also find a valuation relative to
which it is false. (Exercise: every sentence of TFL is either a logical
truth, a logical contradiction, or a contingent sentence. Why?)

The final notion we introduce is that of logical equivalence.

X and Y are LOGICALLY EQUIVALENT if and only if X is a logical
consequence of ¥ and Y a logical consequence of X.

If two sentences are logically equivalent they mean the same thing
from the perspective of TFL: at least semantically TFL cannot tell the
two sentences apart. Examples of logically equivalent sentences include
Aand AAA, or =AV B and 4 — B. This can be checked by means of
truth tables (Exercise!).

6.4 Constructing Truth Tables

It’s time to get our hands dirty. So far we have given a lot of abstract
definitions, but have not really discussed how to do things and, in par-
ticular, how to construct truth tables in a systematic way. That’s what
we will do now!

Consider the sentence (=1 A H) — H. We will give a truth table
which lists all the valuations and says whether this sentence is true or
false on each of them. The valuations assign either the value “True”
or “False” to each atomic sentence. In this case we have two atomic
sentences, I and H, so we have four (22) valuations (v1,. . .,v4) each of
which is a line in the truth table:

Valuation | / H | (<IAH) > H
01 T T
09 T F
U3 F T
04 F F

Our job is to fill out the truth values of (-1 A H) — H.
Here the formation tree will help us know what to do (see §4.3):



The idea is that we work ourselves from LEAVES of the tree (the atomic
sentence) to the ROOT of the formation tree (the sentence that has been
constructed). The truth rule for — tells us how the truth value of =7
depends on the truth of 7. Then the rule for A tells us how the truth
value of =/ A H depends on the truths of =/ and H; and finally, the
rule for — tells us how the truth value of (- A H) — H depends on
those of -/ A H and H.

So to work out the truth values of (=1 A H) — H we first need to
work out the truth values of -7 and =7 A H. We expand our truth table
with columns for each of these.

Valuation | I H | -1 | (7IAH) | <IANH) > H

01 T T
09 T F
U3 F T
U4 F F

The first step is —/. We use the truth table (rule) for negation:

If X is then - X is
T ~ F
F ~ T
Now, we can fill out:
Valuation ‘ I H ‘ =1 ‘ (I NH) H (-INH) > H
v T T | F
v9 T F | F
3 F T | T
U4 F F | T

We worked these out using the following instructions:

> Go to the column for 7 and for every valuation do the following:



— If the value of 7 is T, then put F into the column of -7 at
the line of the valuation.

— If the value of 7 is F, then put T into the column of -7 at
the line of the valuation.

The next step is to consider =7 A H. For this we will use the truth rule
for A:

If Xis andY is then X A Y is
T T ~ T
T F ~ F
F T ~ F
F F ~ F

Now, we can fill out:

Valuation | I H | -1 | (7IAH) | (<IANH) > H
0 T T| F F
09 T F | F F
v3 F T| T T
N F F| T F

We worked these using the following instructions:
> For every valuation go to column A and do the following:

1 If the value of H is F, put F into column (—/ A H) at the line
of the valuation.

— If the value of H is T, go to column of —/:
* if the value of =/ is T, put T into column (-/ A H) and
at the line of the valuation.

* if the value of -7 is F, put F into column (-/ A H) and
at the line of the valuation.

The instruction t is justified by the truth rules of the conjunction: if
one of the conjuncts has value F, the conjunction will also have value F.

Now, finally, we need to look at (- A H) — H, and will use the
truth rule for —:

If Xis and Y is then X — Y is

oo
SRR
¢ ¢ ¢
=3 A



Now, we can fill out:

Valuation | I H | -1 | (7IAH) || <IANH) > H
o1 T T|F F T
) T F|F F T
v3 F T |T T T
74 F F|T F T

We worked these out by the following procedure:
> For every valuation go to column (- A H) and do the following:

* If the value of (I AH) is F, put T into column (~/AH) — H
at the line of the valuation.

— If the value of (- A H) is T go to column H and:

* if the value of H is T, put T into column (~/AH) — H
at the line of the valuation.

* if the value of H is F, put F into column (-/ AH) — H
at the line of the valuation.

The instruction « is justified by the truth rules of the conditional: if the
antecedent of the conditional has value F, then the conditional will also
value T.

With this example in mind let us try to give a general instruction
for constructing a truth table for a sentence X.



How to do truth tables

1. Write down the formation tree of X.

2. Find all atomic sentences on the tree. These will be the
leaves of the tree.

3. If you have found all atomic sentences, you can start the
truth table:
> You will need a column for every atomic sentence.

> If there are # atomic sentences, you will need 2" val-
uations, that is, 2" horizontal lines.

> Make sure you have correctly written down all the
different valuations!

4. From the atomic sentences (the leaves of the tree) move
upwards to the root (the sentence X) and

> for each node (constituent sentence) create a column
in the truth table;

> make sure you correctly identify the main connective
of the sentence heading the column;

> the root, that is, the sentence X should be the last
column of the truth table

5. Moving from left to right compute the truth values of each
column

> Make sure you use the truth rule associated with the
main connective of the sentence heading the column.

> Stay in one and the same valuation (horizontal line)
when you compute the truth value of the column.

> Compute the truth value for every valuation.

6. You are done when you have computed the truth values of
the column of X and there are no gaps in the truth table.

If you follow these outlines, you should be able to construct truth
tables for arbitrary TFL sentences. Of course, the more complicated
the sentences are, and the more atomic sentence letters they contain the



longer and tedious the truth table—but the more important it becomes
to painstakingly stick to the guidelines we have given.

We have already seen that truth tables can be used to find out rel-
ative to which valuations a sentence is true or whether an argument
is valid. They can also be used to determine whether sentences follow
from each other or whether they are consistent or inconsistent. Let sum
how to check for the various logical notions using truth tables:

Validity: Construct a truth table with columns for all atomic sentences
occurring in the premises and the conclusion; columns for all
subsentences of the premises and conclusion, columns for all the
premises and the conclusion. If in all valuation (horizontal line)
in which all premises are true the conclusion is true too, then the
argument is valid. Otherwise it is invalid.

Consequence To check that Y is a consequence of Xj,. .., X,, we need
to check whether X7,...,X, .. Y is valid (see above).

Logical Equivalence To check whether X and Y are logically equiv-
alent, we need to check whether X .. Y and Y .. X are valid (see
above). This will be the case if in a truth table for both X and ¥
whenever X is true relative to valuation so is Y and vice versa.

Logical truth/Tautology X is a tautology if and only if .. X is valid,
that is, if in the truth table for X, X receives value T relative to
all valuations.

Logical contradiction X is a logical contradiction if and only if in
the truth table for X, X receives value F relative to all valuations.

Consistency To check whether Xj,...,X, are consistent construct
a truth table with columns for all atomic sentences occurring
in Xi,...,X,, columns for all subsentences of Xj,...,X,, and
columns for Xj,...,X,. If there is a valuation (horizontal line)
relative to which all of Xj,...,X, receive value T, they are con-
sistent. Otherwise they are inconsistent.

Practice exercises

A. Complete truth tables for each of the following:

1. A—> A
2. C —»-C



(4— B) > (=AV B)
(A—> B)Vv(B— A)
(AAB) - (BV A)
-(AV B) — (=4 A-B)
(=AA=B) > =(4V B)
[(AAB)A~(AAB)|AC
[(AANB)AC] > B
-[(C v 4) v B|

CL PN b @
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B. Some brackets are redundant. Which ones? To find out check the
claims below and eventually propose further conventions for omitting
some brackets.

1. “((AAB)AC) and ‘(4 A (B A C))’ have the same truth table

2. ((AvB)VvC_C) and ‘(4V (BV (C)) have the same truth table

3. ‘((AVB)AC) and (A V (B A C))’ do not have the same truth
table

4. ‘((4 > B) - C) and (4 — (B — (C))’ do not have the same
truth table

C. Write complete truth tables for the following sentences and mark
the column that represents the truth values for the whole sentence.

. a[(XAY)V(XVY)]
. [C—> (DVE]A-C
-(GA(BAH)) - (GV (BVH))

Ll

D. Write complete truth tables for the following sentences and mark the
column that represents the possible truth values for the whole sentence.

1. (D A —|D) -G
2. ("PV-M)—>M
3. =(=4 A -B)

4- [(DAR) > I] > ~(DVR)

E. Can you think of sentences with the following truth table:
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F. Suppose X is TFL sentence containing two atomic sentences. Then
there are in fact sixteen different possible columns for X.

1. Can you explain why?

2. Can you show for each of these combinations that there is a sen-
tence of TFL with that column describing its truth.

3. Can you show there’s always a formula just using — and A with
that column describing its truth.

If you want additional practice, you can construct truth tables for
any of the sentences and arguments in the exercises for the previous
chapter.

G. Use truth tables to determine whether each argument is valid or
invalid.

A— A A

A— (AN-A) .. -4

AV (B — A) .. -A— =B
AVB,BVC,-A..BAC
(BANA) > C,(CANA) - B.. (CAB)— 4

CANL ol o S

H. Determine whether each sentence is a tautology, a contradiction, or
a contingent sentence, using a complete truth table.



-BAB

-DVvD

(AANB)V (BAA)

-[4 — (B — A)]

5 [(AAB) » B] - (4— B)
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I. Determine whether each the following sentences are logically equiva-
lent using complete truth tables. If the two sentences really are logically
equivalent, write “equivalent.” Otherwise write, “Not equivalent.”

1. Aand -4

2. AN-Aand -B — B

3. [(AvB)VvCC]and [AV (BV(0)]
4. AV(BAC)and (AVB)A(AVC)
5 [AN(AVB)] > Band 4 — B

J. Determine whether each the following sentences are logically equiv-
alent using complete truth tables. If the two sentences really are equiv-
alent, write “equivalent.” Otherwise write, “not equivalent.”

A— Aand (4 — A) A (=4 — —=4)
-(4A — B) and -4 — —-B

AV Band -4 — B
(A—>B)—>Cand 4 — (B— ()
A— (BAC)and AN (BAC)

U @ o

K.
L. Determine whether each collection of sentences is consistent or in-
consistent, using a complete truth table.

1. - B,A—> B, A

2. -(AVvB),A—>B,B— A

3. AV B,-B,~-B— -4

4. B—>A,-Bv-4,4A— B

5. (AvB)vC(C,-AvV-B,-CV-B

M. Determine whether each argument is valid or invalid, using a com-
plete truth table.

1. A—>B,B.. 4
2. A—>B,B—->C..A—C
3 A—-B, A—-C..B—>C



N. Determine whether each argument is valid or invalid, using a com-
plete truth table. If invalid, provide a valuation that is a counterexam-
ple.

LAV ([A— (4— 4)] . 4

. AVB,BVC,-B. ANC
A—)B,—!A.'. -B

A, B .. ~(4— -B)
~(AAB),AVB,A— B .. C

Gus P R

O. Are the following statements true? Why?
> if Y is a logical consequence of X, then X — Y is a logical truth.
> if X — Y is a logical truth, then Y is a logical consequence of X.
> if X — Y A=Y is alogical truth, then X is a logical contradiction.

> if X — Y A=Y is true relative to a valuation, then X is a logical
contradiction.

> if X V=X — Y is a logical truth, then Y is a tautology.

> if XV=X — Y is true relative to a valuation, then Y is a tautology.



PART lII

Symbolizations
in 1FL



CHAPTER 7

First steps
towards
Symbolization

In Part IT we have introduced syntax and semantics of the language of
Truth Functional Logic. Now we wish to put the formal apparatus to
use. We wish to show how we can symbolize arguments of English (or
some other language) and then test them for validity.

Recall the arguments we discussed at the beginning of Part II, e.g.,
the argument

1. It is raining outside.
2. If it is raining outside, then Jenny is miserable.
.. Therefore: Jenny is miserable.

We determined that the argument was of the form:

1. 4
2. If A then B
.. Therefore: B

We might symbolize the argument in TFL as follows:

A,A— B .. B.
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And, on the face of it, this seems to be a pretty good symbolization.
We us the sentence letters ‘4’ and ‘B’ to stand for the declarative sen-
tences ‘it is raining outside’ and ‘Jenny is miserable’ respectively, and
the if..., then ...’ in terms of the conditional connective. Recall that
we introduced the conditional with the ‘if..., then...’ reading in mind
and that we motivated the truth table for the conditional using this
understanding. Of course, now that we have a symbolization of the
argument it is straightforward to test whether the argument is valid or
not: we simply build a truth table.

Now, let’s look at the argument

1. It is raining outside.
2. It is not raining outside or Jenny is miserable.
.. Therefore: Jenny is miserable.

The form of the argument seems to be the following:

1. A
2. not A or B
.. Therefore: B

If we use the sentence letters ‘4’ and ‘B’ to stand for same declara-
tive sentences as in the previous argument, the argument can be aptly
symbolized in TFL by:

A,-AV B .. B.

Recall that we introduced the negation connective in terms of ‘not’
or ‘it is not the case’, and understood the disjunction connective in
terms of the English conjunction word ‘or’. Given these assumptions
the symbolization of the English argument turns out to be a valid TFL
argument.

Our informal procedure for symbolizing English arguments can be
summarized as follows: identify the form of the argument; identify the
English (sub)sentence appearing in the argument with sentence letters,
that is, atomic sentences of TFL and symbolize the conjunction words
by the matching connective. But what precisely is the matching connec-
tive? The answer to this question might have been straightforward in
the arguments above, but that’s not always the case. It is worth tackling
the idea of symbolization more systematically.



Symbolizing

Arguments

The starting point of symbolizing arguments in TFL was to identify
(sub)sentences that were the building blocks of the argument and to sym-
bolize them in TFL using certain sentence letters, e.g. in the previous
chapter we used:

A: It’s raining outside.
B: Jenny is miserable.

Such an assignment of declarative sentences to atomic sentences is
called a SYMBOLIZATION KEY. Specifying a symbolization key is the
first step in formalizing an argument in TFL. In doing this, we are not
fixing this symbolization once and for all. We are just saying that, for
the time being, we will think of the atomic sentence of TFL, ‘4’, as
symbolizing the English sentence ‘It is raining outside’, and the atomic
sentence of TFL, ‘B’, as symbolizing the English sentence Jenny is mis-
erable’. Later, when we are dealing with different sentences or different
arguments, we can provide a new symbolization key; as it might be:

A: Jenny is an anarcho-syndicalist
B: Dipan is an avid reader of Tolstoy

It is important to understand that whatever structure an English sen-
tence might have is lost when it is symbolized by an atomic sentence
of TFL. Recall that from the point of view of TFL, an atomic sentence
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is just a letter. It can be used to build more complex sentences, but it
cannot be taken apart.

Once we have fixed a symbolization key, the next step is to sym-
bolize the complex sentences of the argument, that is, the sentences
that conjoin different sentences into a new more complex sentence via
conjunction words. This requires a closer look at the relation between
specific conjunction words and the connectives of TFL.

8.1 Conjunction-words and TFL-Connectives

Certain conjunction words and expressions motivated the semantics,
that is, the truth tables for the connectives of TFL. But there are further
expressions in English that allow us to conjoin sentences together: some
can be symbolized by one of the connectives of TFL we discussed, while
others might need to be symbolized by appealing to a complex TFL-
sentence (recall our discussion of the exclusive or in §6.1). As we shall
see, there are still others that cannot be symbolized in TFL. Let’s first
have a look which conjunction words and expressions can be directly
symbolized by one of the TFL-connectives.

Negation

Let’s start by recalling the guideline we proposed in Section 6.1.

If a sentence can be paraphrased as ‘it is not the case that ...’
it can be symbolised as —.X.

How are we to understand this guideline? Consider the following
sentences:

. The information is retrievable.

. The information is not be retrievable.
. The information is irretrievable.

. The information is not irretrievable.

B W o

Let us use the following representation key:
R: The information is retrievable.

Sentence 1 can now be symbolized by R. Moving on to sentence 3:
saying that the information is irretrievable means that it is not the case



that the information is retrievable. So even though sentence 3 does not
contain the word ‘not’, we will symbolize it as ‘=R’

Sentence 4 can be paraphrased as ‘It is not the case that the infor-
mation is irretrievable.” Which can again be paraphrased as ‘It is not
the case that it is not the case that the information is retrievable’. So
we might symbolize this English sentence with the TFL sentence ‘-—R’.
In other words, in English we can also express negation using prefixes
such as ‘47’ or ‘un’. There are still further ways of expressing negation,
for example, sometimes this may be done using the prefix ‘dis’ as in
honest/dishonest.

But some care is needed when handling negations. For example,
one might think that sentences 5 and 6 negate each other and that if
we symbolize sentence 5 with G, then we should symbolize sentence 6
as -G.

5. Stealing is good.
6. Stealing is bad.

There are two reasons why that would not be a good symbolization.
For one, while we may all agree that stealing is not a good thing to do,
we may think that it is perhaps not exactly bad, if someone who is on
the verge of starvation steels some food. In other words, there may be
things that are neither good nor bad. However, in TFL if ‘G’ is false,
then ‘-G’ is true and we would not have the option so say that some-
thing, e.g. stealing, is neither good nor bad. If we symbolize sentence
6 using a new sentence letter, say ‘B’, then we can allow for that op-
tion. For another, there is no syntactic marker such as a prefix, a word
like ‘not’, etc. that suggests that the sentences 5 and 6 are negations of
each other. There is nothing in the structure of the two sentences that
suggests that one negates the other. But recall that one principal goal
for symbolization is to check whether a given argument is valid and
consider the argument:

1. Steeling is good or donating for charity is good.
2. Steeling is bad.
.. Therefore: Donating for charity is good.

While this is a good argument and perhaps a conceptually valid argu-
ment it is not valid in the strict sense because it not valid in virtue
of its form: it requires understanding ‘bad’ as ‘not good’. So, if we
were to symbolize 6 as ‘-G we would stipulate some logical structure



that the English sentence does not display and would wrongly deem the
argument to be valid.

When symbolizing sentences do only introduce logical structure
that is displayed by the English sentence

If you wish to make the information that in the specific circum-
stances ‘bad’ means that something is not good and vice versa available
in TFL, you can add this as an additional premises when symbolizing
the relevant argument in TFL. That, is if we think that 6 is the negation
of 5 we should add the following premise (using truth tables check that
the premise is true, if and only if, ‘-G’ is true whenever ‘B’ is true):

(=G — B) A (B — —G).

If this premise is added to the above argument, then the argument is
valid and rightly so!

Sometimes even in symbolizing sentences that very much look like
they are negations of each other one needs to be careful. Consider:

7. Jane is happy.
8. Jane is unhappy.

To some it may feel like Jane can be neither happy nor unhappy, and
this may even be assumed in some argument. Jane is without emotions
and in a state of blank indifference: she does not feel happy nor does
she feel unhappy. If we were to symbolize 7 by ‘A’ and then 8 by ‘- H’,
then we would rule out the possibility of Jane being neither happy nor
unhappy. If we try to remain faithful to the idea that Jane can be neither
happy nor unhappy then we need to symbolize 8 using a new atomic
sentence of TFL.

Conjunction

The symbolization guideline for conjunction we introduced Section 6.1
was:.

)

If a sentence can be paraphrased as ‘...and ...
it can be symbolised as (X A Y).

Let’s look at some more examples:



9. Adam is athletic, and Barbara is also athletic.
10. Barbara is athletic and energetic.
11. Barbara and Adam are both athletic.
12. Although Barbara is energetic, she is not athletic.
13. Adam is athletic, but Barbara is more athletic than him.

Let’s fix the following symbolization key:

A: Adam is athletic.
B: Barbara is athletic.
C: Barbara ie energetic.

Sentences g-11 are obviously conjunctions. Notice that we make no
attempt to symbolize the word ‘also’ in sentence g and ‘both’ in sentence
11. Words like ‘both’ and ‘also’ function to draw our attention to the fact
that two things are being conjoined. Maybe they affect the emphasis of
a sentence, but we will not (and cannot) symbolize such things in TFL.
With this caveat, given the above symbolization key, we can symbolize
the Sentence g by the TFL-sentence ‘4 A B’.

Sentence 10 says two things (about Barbara). In English, it is per-
missible to refer to Barbara only once. It might be tempting to think
that we need to symbolize sentence 10 with something along the lines
of ‘B and energetic’. This would be a mistake. Once we symbolize part
of a sentence as B, any further structure is lost, as B is an atomic sen-
tence of TFL. Conversely, ‘energetic’ is not an English sentence at all.
What we are aiming for is something like ‘B and Barbara is energetic’.
Given our symbolization key we should thus symbolize 10 as (B A C).

Sentence 11 says one thing about two different subjects. It says of
both Barbara and Adam that they are athletic, even though in English
we use the word ‘athletic’ only once. The sentence can be paraphrased
as ‘Barbara is athletic, and Adam is athletic’. We can symbolize this in
TFL as (B A 4), using the same symbolization key that we have been
using.

Are Sentences 12 and 13 conjuctions? The word ‘although’ sets up
a contrast between the first part of the sentence and the second part.
Nevertheless, the sentence tells us both that Barbara is energetic and
that she is not athletic. In order to make each of the conjuncts an atomic
sentence, we need to replace ‘she’ with ‘Barbara’. So we can paraphrase
sentence 12 as, ‘Barbara is energetic, and Barbara is not athletic’. The
second conjunct contains a negation, so we paraphrase further: ‘Bar-
bara is energetic and it is not the case that Barbara is athletic’. Now we
can symbolize this with the TFL sentence (C A =B). Note that we have



lost all sorts of nuance in this symbolization. There is a distinct differ-
ence in tone between sentence 12 and ‘Both Barbara is energetic and
it is not the case that Barbara is athletic’. TFL does not (and cannot)
preserve these nuances.

Sentence 13 raises similar issues. There is a contrastive structure,
but this is not something that TFL can deal with. So we can paraphrase
the sentence as ‘Adam is athletic, and Barbara is more athletic than
Adam’. (Notice that we once again replace the pronoun ‘him’ with
‘Adam’.) How should we deal with the second conjunct? We already
have the sentence letter 4, which is being used to symbolize ‘Adam is
athletic’, and the sentence B which is being used to symbolize ‘Barbara
is athletic’; but neither of these concerns their relative athleticity. So,
to symbolize the entire sentence, we need a new sentence letter. Let
the TFL sentence R symbolize the English sentence ‘Barbara is more
athletic than Adam’. Now we can symbolize sentence 13 by (4 A R).

We can add these to our toolbox for symbolisation:

If a sentence can be paraphrased as

3

> ‘...and ...’

> ‘...but...’

> ‘Both...and ...’
> ‘Although ..., ...°

it can be symbolised as X A Y.

Disjunction

In Section 6.1 proposed that:

If a sentence can be paraphrased as “...or ...
it can be symbolised as (X vV Y).

Let’s consider some examples again

14. Fatima will play videogames, or she will watch movies.
15. Fatima or Omar will play videogames.

with the symbolization key



F: Fatima will play videogames.
0: Omar will play videogames.
M: Fatima will watch movies.

In Chapter 6.1 we already point out that here are two different read-
ing available for the English word ‘or’: an inclusive one and an exclusive
one. On the inclusive reading of ‘or’ we take the Sentence 15 to be true,
if either Fatima or Omar play videogames, or both play videogames. In
contrast, on the exclusive reading we take 15 to be true if either Fatima
or Omar play videogames, but false if both play video games. It is the
inclusive reading of ‘or’ that we symbolize using the TFL-connective V.

For Sentence 15 the inclusive reading is available and using the
above symbolization key it can be symbolized as F V 0. For Sentence
14 it seems that the salient understanding of the sentence points to
the exclusive reading: presumably Fatima cannot play videogames and
watch movies at the same time. In fact the reason why we tend to
understand Sentence 14 in that way is, arguably, precisely because we
think that Fatima cannot do two things at once, and not because of our
understanding of ‘or’. As a consequence when, in the context of an ar-
gument, we symbolize the Sentence 14 it is still preferable to symbolize
it using the inclusive ‘or’ as ‘# V M’ and to add the additional premise
that she does not do both, that is ‘—~(F A M)’.

In contrast consider the sentence:

16. Either Fatima will play videogames, or she will watch movies.
17. Either Fatima will play videogames or Omar will play
videogames.

It seems that ‘either...or...” in contrast to simple disjunction with
‘or’, favors an exclusive reading. So unless, there is strong evidence to
suspect that sentences 16 and 17 are to be understood in an inclusive
way, they should be symbolized using the exclusive ‘or’.

How do we symbolize the exclusive ‘or’ in TFL? Understood exclu-
sively Sentence 16 can be paraphrased as follows:

> Fatima will play videogames or Omar will play videogames, but
not both of them will play videogames.

Using our symbolization key we can symbolize the first part of sen-
tence, that is, the part up to the comma as ‘/ v 0’. Since by our
previous discussion we know that ‘but’ should be symbolized by a con-
junction it remains to see how to symbolize ‘not both of them will play



videogames’. Going back to our discussion of negation and conjunc-
tion we see that the latter sentence is appropriately symbolized by the
sentence —(F A 0). Putting everything together Sentence 17 should be
symbolized by the sentence

(FVO)A=(FAO).

b

If a sentence can be paraphrased in English as ‘either...or ...,
it can be symbolised as (X VY) A (X AY)).

Finally notice that in English ‘neither... nor...” is used to negate a
disjunction, that is, using our symbolization key the sentences

> Neither Fatima nor Omar will play videogames.

> Neither Fatima will play videogames nor Omar will play
videogames.

> Neither Fatima will play videogames nor will Omar.

should all be symbolized by the TFL sentence ‘~(F Vv 0)’.

If a sentence can be paraphrased in English as
‘neither ...nor ..., it can be symbolised as =(X V Y).

Conditional

Let us again recall the symbolization guideline that we introduced in
Section 6.1:

If a sentence can be paraphrased as
‘If ..., then ...’ it can be symbolised as (X — Y).

Now consider the sentences

18. If the number can be divided by 4, then it is an even number.
19. If the number can be divided by 4, it is an even number.
20. it is an even number, if the number can be divided by 4.

and use the following symbolization key:

P: The number can be divided by 4.



F: The number is an even number.

Sentence 19 and 20 are just a rephrasing of 18. So we will again sym-
bolise them as (P — F).
Now consider

21. The number is an even number only if the number can be divided
by 4.

21 is also a conditional. But, intuitively, while 18-19 are true 20 is
false, as, e.g., 6 is an even number but cannot be divided by 4. This
suggest that 20 needs to be symbolized differently than 18-19. Indeed,
‘only if” inverses the order of the conditional: whereas 18-19 are sym-
bolized as (P — F), 20 needs to be symbolized as (¥ — P). Reflecting
on the truth table of the conditional, ¥ — P says, assuming our sym-
bolization key, that if F is true, that if it is true that the number is even,
then P must be true for the conditional to be true, i.e., the number
must be divisible by 4. That’s of course not always the case, so the
truth conditions for 21 fits with our intuitive judgement.

In fact, sentence 21 can be paraphrased as ‘If Jean is in France, then
Jean is in Paris’. So we can symbolize it by (¥ — P): the other way
around to 18.

If a sentence can be paraphrased as
> ‘If ...x, then ...y’

> If ...x, ...v°

> ox, if Ly

> ‘--'X onlyif...y’

it can be symbolized as (X — Y) such that X assumes the
position of ...x and Y that of .. .y.

\.

At this point, a word of warning about the connective ‘=’ seems re-
quired: while the connectives like ‘A’ and ‘v’ arguable closely track
our understanding of ‘and’ and ‘07’ in natural language, the situation
is slightly more complicated with respect to ‘=’ and ‘if..., then...”. We
will return to this in §9.1 and ??.



Biconditional

In this textbook we have frequently used the English expression ‘if and
only if’, as in: an atomic sentence X is true relative to a valuation v
if and only if v assigns the value T to X. ‘if and only if” seems to be
another conjunction word of English, that is, a way of composing two
sentences into a new sentence. Is there a way to symbolize sentences of
the form ... if and only if...” in TFL?

Consider the sentences:

22. Laika is a dog only if she is a mammal
23. Laika is a dog if she is a mammal
24. Laika is a dog if and only if she is a mammal

We will use the following symbolization key:

D: Laika is a dog
M: Laika is a mammal

Sentence 22, for reasons discussed above, can be symbolized by ‘D —
M’. in contrast Sentence 23 can be paraphrased as, ‘If Laika is a mam-
mal then Laika is a dog’. So it can be symbolized by ‘M — D’.
Sentence 24 says something stronger than both 22 and 23. It can be
paraphrased as ‘Laika is a dog if Laika is a mammal, and Laika is a dog
only if Laika is a mammal’. This is just the conjunction of sentences
22 and 23. So we can symbolize it as ‘((D — M) A (M — D))’. We
call this a BICONDITIONAL, because it entails the conditional in both
directions. This leads to the following symbolization guideline:

If a sentence can be paraphrased as °.. ., if and only if ...,’
it can be symbolised as (X — Y) A (Y — X)).

The expression ‘if and only if” occurs a lot especially in philosophy,
mathematics, and logic. For brevity, we can abbreviate it with the snap-
pier word ‘iff’. We will follow this practice. So ‘if’ with only one f” is the
English conditional. But ‘iff’ with fwo ‘f’s is the English biconditional.
Because the biconditional occurs so often, we will sometimes abbreviate
the lengthy ‘(X — Y)A(Y — X)’ and write X < Y instead. However,
officially the symbol ‘<’ is not a symbol of the language of TFL. It is
merely used as a convenient way to state a biconditional and it is good
to keep that in mind.



A word of caution. Ordinary speakers of English often use ‘if ...,
then...’ when they really mean to use something more like “...if and
only if ...°. Perhaps your parents told you, when you were a child: ‘if
you don’t eat your greens, you won’t get any dessert’. Suppose you ate
your greens, but that your parents refused to give you any dessert, on
the grounds that they were only committed to the conditional (roughly “if
you get dessert, then you will have eaten your greens’), rather than the
biconditional (roughly, ‘you get dessert iff you eat your greens’). Well,
a tantrum would rightly ensue. So, be aware of this when interpreting
people; but in your own writing, make sure you use the biconditional
iff you mean to.

Unless

A difficult case is when we use the conjunction word ‘unless’:

25. Unless you wear a jacket, you will catch a cold.
26. You will catch a cold unless you wear a jacket.

These two sentences are equivalent. They are also equivalent to the
following:

27. If you do not wear a jacket, then you will catch a cold.
28. If you do not catch a cold, then you wore a jacket.
29. Either you will wear a jacket or you will catch a cold.

And we know how to symbolise these sentences. We will use the sym-
bolization key:

J: You will wear a jacket.
D: You will catch a cold.

and can then give the symbolizations ‘- / — D’, ‘-D — J’and ‘JVD’.
All three are correct symbolizations. Indeed, in you may wish to
check that all three symbolizations are equivalent in TFL.

b

If a sentence can be paraphrased as ‘Unless ..., ...7,
then it can be symbolized as (X VY).

Again, though, there is a little complication. ‘Unless’ can be sym-
bolized as a conditional; but as we said above, people often use the con-
ditional (on its own) when they mean to use the biconditional. Equally,



‘unless’ can be symbolized as a disjunction; but there are two kinds
of disjunction (exclusive and inclusive). So it will not surprise you to
discover that ordinary speakers of English often use ‘unless’ to mean
something more like the biconditional, or like exclusive disjunction.
Suppose someone says: ‘I will go running unless it rains’. They proba-
bly mean something like ‘I will go running iff it does not rain’ (i.e. the
biconditional), or ‘either I will go running or it will rain, but not both’
(i.e. exclusive disjunction). Again: be aware of this when interpreting
what other people have said, but be precise in your writing.

More on Connectives in English

We have discussed several conjunction-words and sentence construc-
tions that can be aptly symbolized in TFL. However, there are of course
many more conjunction-words in English and some of them can be ad-
equately symbolized in TFL. However, there are also many conjunction
words that cannot be adequately symbolized in TFL. We shall discuss
some examples in Chapter g.

8.2 Symbolizing Complex Sentences

It’s time to put all the pieces together and to start symbolizing complex
sentence of English. Here is our general symbolization strategy for an
English sentence:



1. Check whether the sentence can be paraphrased as sen-
tences constructed from other sentences by means of
conjunction-words. If the answer is no, go to Step 2. If
the answer is yes, go to Step 3.

2. Check the symbolization key:

> If we have already chosen an atomic TFL-sentence to
symbolize the sentence, replace the English sentence
by that atomic TFL-sentence.

> Otherwise, choose a new atomic TFL-sentence to
symbolize the sentence, extend the symbolization
key accordingly and replace the English sentence by
the atomic TFL sentence.

3. Symbolize the sentence in accordance with the symboliza-
tion guideline with the component sentences in the place
of the metavariables. Make sure you don’t forget the brack-
ets! For each of the component sentences—moving from
left to right—repeat the procedure, that is, go back to Step
1.

Let’s go through an example to see how to apply the strategy. Con-
sider:

30. You won’t get both soup and salad.

Let’s start with the symbolization procedure.

You won’t get both soup and salad.
It’s not the case that you will get both soup and salad

You will get both soup and salad

Our next stage is to aim to symbolise ‘you will get both soup and salad’



You won’t get both soup and salad.
It’s not the case that you will get both soup and salad

You will get both soup and salad
You will get soup and you will get salad
R A
You will get soup  You will get salad
Both “You will get soup’ and “You will get salad’ cannot be paraphrased
in any of our standard forms so we have to use an atomic TFL-sentence.

As we haven’t already introduced any atomic TFL-sentences, we need
to introduce new ones. Let’s say

$1: You will get soup
S2: You will get salad

So we can replace these leaves of the symbolisation tree with the atomic
sentences, and then work the way back up to determine the symbolisa-
tion of the original sentence.

You won’t get both soup and salad.
It’s not the case that you will get both soup and salad
- ($11A82)

You will get both soup and salad
You will get soup and you will get salad
S1 A 8o

/ N

You will get soup  You will get salad
S1 SQ

This process may seem very tedious and, of course, very often we
can determine a correct symbolization of an English sentence without
sticking painstakingly to this step by step process. However, by sticking
to the process we make sure not to move too quickly. So if you are
unsure of how to symbolize a sentence, the process provides a safety net.
Yet before starting with the symbolization process one should determine
the precise sentential structure of the sentence under consideration.
Consider a slight variant of Sentence 30:



> It is not the case that you will get soup and you will get salad.
In this form the sentence displays a potential ambiguity between:

> It is not the case that: you will get soup and you will get salad.

> It is not the case that you will get soup, and you will get salad.

As we have seen the first reading gets symbolized as —(S1 A Sy), while
the second reading should be symbolized as (=81 A Sy) (Exercise: check
that this is the correct symbolization). These two symbolizations are of
course very different and, thus, at the beginning of the symbolization
process it is important to determine the precise structure of the sentence
one wishes to symbolize. We discuss this issue some more in Chapter
10.

8.3 Symbolizing Arguments

We have learned how to symbolize English sentences in TFL. But how
does one symbolize arguments in TFL? The answer should not be to
surprising: one simply needs to symbolize the premises and conclusion
in TFL with the caveat that one must use one and the same symboliza-
tion key in this symbolization process. Let’s look at a simple example
(notice that the argument may not be sound):

1. Rishi Sunak will make Great Britain great again or he will loose
the election.

2. Rishi Sunak will not make Great Britain great again.

.. Therefore: Rishi Sunak will loose the election.

with the following symbolization key:

R: Rishi Sunak will make Great Britain great again.
L: he will loose the election.

Using our symbolization procedure we then obtain the following
TFL-argument
RVL-R.: L

which can be checked for logical validity (Check!).



Practice exercises

A. Using the symbolization key given, symbolize each English sentence
in TFL.

U @ o

M: Those creatures are men in suits.
C: Those creatures are chimpanzees.
G: Those creatures are gorillas.

Those creatures are not men in suits.

Those creatures are men in suits, or they are not.

Those creatures are either gorillas or chimpanzees.

Those creatures are neither gorillas nor chimpanzees.

If those creatures are chimpanzees, then they are neither gorillas
nor men in suits.

Unless those creatures are men in suits, they are either chim-
panzees or they are gorillas.

B. Using the symbolization key given, symbolize each English sentence
in TFL.

SAEANL Sl S

10.

Mister Ace was murdered.

The butler did it.

The cook did it.

The Duchess is lying.

Mister Edge was murdered.

The murder weapon was a frying pan.

TEEQEA

Either Mister Ace or Mister Edge was murdered.

If Mister Ace was murdered, then the cook did it.

If Mister Edge was murdered, then the cook did not do it.
Either the butler did it, or the Duchess is lying.

The cook did it only if the Duchess is lying.

If the murder weapon was a frying pan, then the culprit must
have been the cook.

If the murder weapon was not a frying pan, then the culprit was
either the cook or the butler.

Mister Ace was murdered if and only if Mister Edge was not mur-
dered.

The Duchess is lying, unless it was Mister Edge who was mur-
dered.

If Mister Ace was murdered, he was done in with a frying pan.



11. Since the cook did it, the butler did not.
12. Of course the Duchess is lying!

C. Using the symbolization key given, symbolize each English sentence
in TFL.

SO W 0 M

[eclaN{

10.

11.
12.

Ej: Ava is an electrician.

Ey: Harrison is an electrician.

Fi: Ava is a firefighter.

Fy: Harrison is a firefighter.

S1: Ava is satisfied with her career.

S9: Harrison is satisfied with his career.

. Ava and Harrison are both electricians.

. If Ava is a firefighter, then she is satisfied with her career.

. Ava is a firefighter, unless she is an electrician.

. Harrison is an unsatisfied electrician.

. Neither Ava nor Harrison is an electrician.

. Both Ava and Harrison are electricians, but neither of them find

it satisfying.

. Harrison is satisfied only if he is a firefighter.
. If Ava is not an electrician, then neither is Harrison, but if she is,

then he is too.

. Ava is satisfied with her career if and only if Harrison is not sat-

isfied with his.

If Harrison is both an electrician and a firefighter, then he must
be satisfied with his work.

It cannot be that Harrison is both an electrician and a firefighter.
Harrison and Ava are both firefighters if and only if neither of
them is an electrician.

D. Give a symbolization key and symbolize the following English sen-
tences in TFL.

Sl S

Alice and Bob are both spies.

If either Alice or Bob is a spy, then the code has been broken.

If neither Alice nor Bob is a spy, then the code remains unbroken.
The German embassy will be in an uproar, unless someone has
broken the code.

Either the code has been broken or it has not, but the German
embassy will be in an uproar regardless.

Either Alice or Bob is a spy, but not both.



E. Give a symbolization key and symbolize the following English sen-
tences in TFL.

1. If there is food to be found in the pridelands, then Rafiki will talk
about squashed bananas.

2. Rafiki will talk about squashed bananas unless Simba is alive.

3. Rafiki will either talk about squashed bananas or he won’t, but
there is food to be found in the pridelands regardless.

4. Scar will remain as king if and only if there is food to be found
in the pridelands.

5. If Simba is alive, then Scar will not remain as king.

F. For each argument, write a symbolization key and symbolize the
argument in TFL. Check whether these symbolizations are valid argu-
ments. If not, give a valuation that shows that the argument is invalid. If
the argument is invalid, are premises and conclusion jointly consistent?

1. If Dorothy plays the piano in the morning, then Roger wakes
up cranky. Dorothy plays piano in the morning unless she is
distracted. So if Roger does not wake up cranky, then Dorothy
must be distracted.

2. It will either rain or snow on Tuesday. If it rains, Neville will be
sad. If it snows, Neville will be cold. Therefore, Neville will either
be sad or cold on Tuesday.

3. If Zoog remembered to do his chores, then things are clean but
not neat. If he forgot, then things are neat but not clean. There-
fore, things are either neat or clean; but not both.

G. For each argument, write a symbolization key and translate the ar-
gument as well as possible into TFL. The part of the passage in italics
is there to provide context for the argument, and doesn’t need to be
symbolized. Check for validity. Do these arguments use English con-
nectives that cannot be symbolized appropriately in TFL (cf. Chapter

9)

1. It is going to rain soon. I know because my leg is hurting, and
my leg hurts if it’s going to rain.

2. Spider-man tries to figure out the bad guy’s plan. If Doctor Octopus
gets the uranium, he will blackmail the city. I am certain of this
because if Doctor Octopus gets the uranium, he can make a dirty
bomb, and if he can make a dirty bomb, he will blackmail the
city.



3. A westerner tries to predict the policies of the Chinese government. If the
Chinese government cannot solve the water shortages in Beijing,
they will have to move the capital. They don’t want to move the
capital. Therefore they must solve the water shortage. But the
only way to solve the water shortage is to divert almost all the
water from the Yangzi river northward. Therefore the Chinese
government will go with the project to divert water from the south
to the north.



CHAPTER 9

On Truth-
functional

connectives

In this chapter, we reflect on truth-functional logic and the connectives
we’ve used.

9.1 Non truth-functional connectives

Let’s introduce an important idea.

A connective is TRUTH-FUNCTIONAL iff the truth value of a sen-
tence with that connective as its main connective is uniquely
determined by the truth value(s) of the constituent sentence(s).

Every connective in TFL is truth-functional. We were able to give
rules to determine what the truth value of a sentence —X is depending
only on the truth value of X. The truth value of X uniquely determines
the truth value of =X . The same was true for all the other connectives
of TFL (A,V,—), as is evidenced by the truth rules and truth tables
we gave for these connectives. This is what gives TFL its name: it is
truth-functional logic.
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In plenty of languages, e.g. English, there are connectives that are
not truth-functional. We here describe just two (Exercise: find further
non-truth-functional connectives of English):

Necessarily

In English, for example, we can form a new sentence from any simpler
sentence by prefixing it with ‘Necessarily, ...’ or ‘It is necessary that...’.
The truth value of this new sentence is not fixed solely by the truth value
of the original sentence. For consider two true sentences:

1. 2+2=4
2. Shostakovich wrote fifteen string quartets

Whereas it is necessary that 2 + 2 = 4, it is not necessary tthat
Shostakovich wrote fifteen string quartets. If Shostakovich had died
earlier, he would have failed to finish Quartet no. 15; if he had lived
longer, he might have written a few more. So ‘It is necessary that...’ is
a connective of English, but it is not truth-functional.

Subjunctive conditionals

We said that — was pretty bad at capturing subjunctive conditionals of
English. The problem is that a subjunctive conditional is not truth
functional. Consider the two sentences:

3. If Mitt Romney had won the 2012 election, then he would have
been the 45th President of the USA.

4. If Mitt Romney had won the 2012 election, then he would have
turned into a helium-illed balloon and floated away into the night
sky.

Sentence 3 is true; sentence 4 is false, but both have false antecedents
and false consequents. So the truth value of the whole sentence is not
uniquely determined by the truth value of the constituent sentences.
However, — is the best that can be done at symbolising subjunc-
tive conditionals of English in TFL. TFL just doesn’t have the required
resources as the subjunctive conditional is not truth-functional.



Ambiguity

In English, sentences can be AMBIGUOUS, i.e., they can have more than
one meaning. There are many sources of ambiguity. One is lexical ambi-
guity: a sentence can contain words which have more than one meaning.
For instance, ‘bank’ can mean the bank of a river, or a financial institu-
tion. So I might say that ‘I went to the bank’ when I took a stroll along
the river, or when I went to deposit a check. Depending on the situ-
ation, a different meaning of ‘bank’ is intended, and so the sentence,
when uttered in these different contexts, expresses different meanings.

A different kind of ambiguity is structural ambiguity. This arises
when a sentence can be interpreted in different ways, and depending on
the interpretation, a different meaning is selected. A famous example
due to Noam Chomsky is the following:

1. Flying planes can be dangerous.

There is one reading in which ‘flying’ is used as an adjective which
modifies ‘planes’. In this sense, what’s claimed to be dangerous are
airplanes which are in the process of flying. In another reading, ‘flying’
is a gerund: what’s claimed to be dangerous is the act of flying a plane.
In the first case, you might use the sentence to warn someone who’s
about to launch a hot air balloon. In the second case, you might use it
to counsel someone against becoming a pilot.

When the sentence is uttered, usually only one meaning is intended.
Which of the possible meanings an utterance of a sentence intends is
determined by context, or sometimes by how it is uttered (which parts
of the sentence are stressed, for instance). Often one interpretation is
much more likely to be intended, and in that case it will even be difficult
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to “see” the unintended reading. This is often the reason why a joke
works, as in this example from Groucho Marx:

1. One morning I shot an elephant in my pajamas.
2. How he got in my pajamas, I don’t know.

Ambiguity is related to, but not the same as, vagueness. An adjec-
tive, for instance ‘rich’ or ‘tall,” is VAGUE when it is not always possible
to determine if it applies or not. For instance, a person who’s 6 ft 4 in
(1.9 m) tall is pretty clearly tall, but a building that size is tiny. Here,
context has a role to play in determining what the clear cases and clear
non-cases are (‘tall for a person,’ ‘tall for a basketball player,” ‘tall for
a building’). Even when the context is clear, however, there will still be
cases that fall in a middle range.

In TFL, we generally aim to avoid ambiguity. We will try to give
our symbolization keys in such a way that they do not use ambigu-
ous words or disambiguate them if a word has different meanings. So,
e.g., your symbolization key will need two different sentence letters for
‘Rebecca went to the (money) bank’ and ‘Rebecca went to the (river)
bank.” Vagueness is harder to avoid. Since we have stipulated that every
case (and later, every valuation) must make every basic sentence (or
sentence letter) either true or false and nothing in between, we cannot
accommodate borderline cases in TFL.

It is an important feature of sentences of TFL that they cannot be
structurally ambiguous. Every sentence of TFL can be read in one,
and only one, way. This feature of TFL is also a strength. If an English
sentence is ambiguous, TFL can help us make clear what the different
meanings are. Although we are pretty good at dealing with ambiguity in
everyday conversation, avoiding it can sometimes be terribly important.
Logic can then be usefully applied: it helps philosopher express their
thoughts clearly, mathematicians to state their theorems rigorously, and
software engineers to specify loop conditions, database queries, or ver-
ification criteria unambiguously.

Stating things without ambiguity is of crucial importance in the
law as well. Here, ambiguity can, without exaggeration, be a matter
of life and death. Here is a famous example of where a death sen-
tence hinged on the interpretation of an ambiguity in the law. Roger
Casement (1864-1916) was a British diplomat who was famous in his
time for publicizing human-rights violations in the Congo and Peru (for
which he was knighted in 1911). He was also an Irish nationalist. In
1914-16, Casement secretly travelled to Germany, with which Britain



was at war at the time, and tried to recruit Irish prisoners of war to fight
against Britain and for Irish independence. Upon his return to Ireland,
he was captured by the British and tried for high treason.

The law under which Casement was tried is the Treason Act of 1357.
That act specifies what counts as treason, and so the prosecution had
to establish at trial that Casement’s actions met the criteria set forth in
the Treason Act. The relevant passage stipulated that someone is guilty
of treason

if a man is adherent to the King’s enemies in his realm,
giving to them aid and comfort in the realm, or elsewhere.

Casement’s defense hinged on the last comma in this sentence, which is
not present in the original French text of the law from 1351. It was not
under dispute that Casement had been ‘adherent to the King’s enemies’,
but the question was whether being adherent to the King’s enemies con-
stituted treason only when it was done in the realm, or also when it was
done abroad. The defense argued that the law was ambiguous. The
claimed ambiguity hinged on whether ‘or elsewhere’ attaches only to
‘giving aid and comfort to the King’s enemies’ (the natural reading
without the comma), or to both ‘being adherent to the King’s enemies’
and ‘giving aid and comfort to the King’s enemies’ (the natural reading
with the comma). Although the former interpretation might seem far
fetched, the argument in its favor was actually not unpersuasive. Nev-
ertheless, the court decided that the passage should be read with the
comma, so Casement’s antics in Germany were treasonous, and he was
sentenced to death. Casement himself wrote that he was ‘hanged by a
comma’.

We can use TFL to symbolize both readings of the passage, and
thus to provide a disambiguiation. First, we need a symbolization key:

A4: Casement was adherent to the King’s enemies in the realm.
G: Casement gave aid and comfort to the King’s enemies in the
realm.

B: Casement was adherent to the King’s enemies abroad.

H: Casement gave aid and comfort to the King’s enemies abroad.

The interpretation according to which Casement’s behavior was not
treasonous is this:

1. AV(GV H)



The interpretation which got him executed, on the other hand, can be
symbolized by:

1. (AVB)V(GVH)

Remember that in the case we’re dealing with Casement, was adherent
to the King’s enemies abroad (B is true), but not in the realm, and he
did not give the King’s enemies aid or comfort in or outside the realm
(4, G, and H are false).

One common source of structural ambiguity in English arises from
its lack of parentheses. For instance, if I say ‘I like movies that are not
long and boring’, you will most likely think that what I dislike are movies
that are long and boring. A less likely, but possible, interpretation
is that I like movies that are both (a) not long and (b) boring. The
first reading is more likely because who likes boring movies? But what
about ‘I like dishes that are not sweet and flavorful’> Here, the more
likely interpretation is that I like savory, flavorful dishes. (Of course, I
could have said that better, e.g., ‘I like dishes that are not sweet, yet
flavorful’.) Similar ambiguities result from the interaction of ‘and’ with
‘or’. For instance, suppose I ask you to send me a picture of a small
and dangerous or stealthy animal. Would a leopard count? It’s stealthy,
but not small. So it depends whether I’'m looking for small animals that
are dangerous or stealthy (leopard doesn’t count), or whether I'm after
either a small, dangerous animal or a stealthy animal (of any size).

These kinds of ambiguities are called scope ambiguities, since they
depend on whether or not a connective is in the scope of another. For
instance, the sentence, ‘Avengers: Endgame is not long and boring’ is
ambiguous between:

1. Avengers: Endgame is not: both long and boring.
2. Avengers: Endgame is both: not long and boring.

Sentence 2 is certainly false, since Avengers: Endgame is over three hours
long. Whether you think 1 is true depends on if you think it is boring
or not. We can use the symbolization key:

B: Avengers: Endgame is boring.
L: Avengers: Endgame is long.

Sentence 1 can now be symbolized as ‘(L A B)’, whereas sentence 2
would be ‘=L A B’. In the first case, the ‘A’ is in the scope of ‘=’ in the
second case ‘=’ is in the scope of ‘A’.



The sentence ‘Tai Lung is small and dangerous or stealthy’ is am-
biguous between:

3. Tai Lung is either both small and dangerous or stealthy.
4. Tai Lung is both small and either dangerous or stealthy.

We can use the following symbolization key:

D: Tai Lung is dangerous.
$: Tai Lung is small.
T: Tai Lung is stealthy.

The symbolization of sentence 3 is ‘(S AD) Vv I” and that of sentence 4
is ‘S A (D v T)’. In the first, Ais in the scope of Vv, and in the second
Vis in the scope of A.

Practice exercises

A. The following sentences are ambiguous. Give symbolization keys
for each and symbolize the different readings.

1. Haskell is a birder and enjoys watching cranes.
2. The zoo has lions or tigers and bears.
3. The flower is not red or fragrant.

10.1 Limits of Symbolization in TFL

All of the connectives of TFL are truth-functional, but more than that:
they really do nothing butz map us between truth values. When we
symbolize a sentence or an argument in TFL, we ignore everything
besides the contribution that the truth values of a component might make
to the truth value of the whole. There are subtleties to our ordinary
claims that far outstrip their mere truth values. Sarcasm; poetry; snide
implicature; emphasis; these are important parts of everyday discourse,
but none of this is retained in TFL. As remarked in §8.1, TFL cannot
capture the subtle differences between the following English sentences:

Dana is a logician and Dana is a nice person

Although Dana is a logician, Dana is a nice person

Dana is a logician despite being a nice person

Dana is a nice person, but also a logician

Dana’s being a logician notwithstanding, he is a nice person

U @ o



All of the above sentences will be symbolized with the same TFL sen-
tence, perhaps ‘L A N’. This does not mean that there are no subtle
differences between those sentences. It just means that from the per
spective of TFL, they should be symbolized by the same TFL-sentence
and that TFL is ignorant of these subtle differences.



PART IV

Natural
deduction for
TFL



CHAPTER 11

The very idea
of natural
deduction

Way back in §2, we said that an argument is valid iff it is impossible to
make all of the premises true and the conclusion false. In the case of
TFL, this led us to develop truth tables. Each line of a complete truth
table corresponds to a valuation. So, when faced with a TFL argument,
we have a very direct way of assessing whether it is possible to make
all of the premises true and the conclusion false: just thrash through
the truth table. However, using truth tables means that we are not
reasoning or arguing within the language of TFL. Rather, we reasoning
about TFL-arguments rather than with them.

When you actually use arguments, for example in philosophical es-
says, you typically instead will break down an argument into smaller
compelling steps, which your interlocutor or reader is forced to accept.
It is good that at the end we may check, using truth tables, that your
argument was indeed valid, but that’s not how reasoning and argumen-
tation works. The goal of this section is to provide a “reasoning system”
for TFL. This reasoning system should produce valid arguments only
and, ideally, also enable us to produce, that is, prove all valid arguments
of TFL.

The reasoning systems for TFL is called NATURAL DEDUCTION. The
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idea of natural deduction is to indeed to break down an argument into
smaller steps that are obviously valid and piecing these together, and
thereby arriving at the intended conclusion. Suppose you’re trying to
convince someone that

A— (BAC), A B

is valid, and they don’t see it. You can help them by breaking it up into
two steps: first see that B A C follows and then note that B follows from
BAC.

In more detail: Grant me that A — (B A C) and 4 are true. Then
what else do we know to be true? Here’s something: B A C. Why?
Because in general Modus Ponens is an excellent, compelling argument
pattern: any argument of the form X, X — Y .. Y is valid: there
are no valuations where X and X — Y are true but Y is false. So
if our premises 4 — (B A C) and 4 are true, then B A C must also
be true: that’s just Modus Ponens. So now from our supposition of
A — (B AC) and 4, we now also know B A C. What else follows from
these three statements? Here’s something: B. Why? Well, BA C is true;
so certainly B must be true. So we know that from 4 — (B A C) and 4
we can conclude B by walking someone through these two steps. This
will be enough to show that A — (B A C), 4 .. B is valid.

To keep track of what assumptions have been made and steps of
the argument we will give precise forms that this argument should be
written:

1 |[A— (BAC)

2 |4

3 ?/\ C From 1, 2
4 | B From 3

Our premises are written above the horizontal line. They have to be
granted without justification. Then each new line follows from the previ-
ous lines. The vertical line is there to highlight that everything coming
below is within the context of the premises that have been assumed,;
that we are looking for consequences of the premises.

We can also use this presentation to be clear about arguments that
we make in English:



1 | If Alice came to the party, then Beth and Cath came

2 | Alice came to the party

3 | Beth and Cath came to the party From 1, 2
4 | Beth came to the party From 3

You might think of it as a bag you’re collecting things to be accepted
in. You have to grant the premises, they go in the bag for free, then
we give certain rules that allow us to add additional statements which
must be true so long as the other things already in the bag are true.

Suppose I provide you with the following argument:

1 |P— (=0 - -R)

2 | P—--0

3 | PAS

4 T From 1, 2, 3

I concluded line 3 as a logical consequence of lines 1, 2 and 3. It does
follow, i.e, the argument is valid; but this is not very helpful to someone
who doesn’t yet see that it’s valid.

Instead, we will be describing various rules which we propose that
have to be accepted as valid reasoning steps, and all more complicated
steps should be broken up into simpler ones. So we should break this
argument up into the steps:

1 |P— (=0 - -R)

2 | P—>-0

3 | PAS

4 P— From 3

5 |70 —R From 1, 4
6 | -0 From 2, 4
7 | R From 5, 6

The other thing we should do is to give a name for the steps that we
use. Here we've just said ‘From 1,4’, but someone might ask: fow does



it follow from lines 1 and 4. We will give names for the various simple
steps of reasoning we use and say: “well, it follows from lines 1 and 4
by the rule conditional elimination, which we abbreviate by“—E”.”

1 | P—(~Q - -R)

2 | P—->-0Q

3 |PAS

4 P— AE 3
5 | -0 —R —E1,4
6 | -Q —E 2 4
7 | R —E 5,6

We will provide various rules, and describe why they are acceptable.
We should then break any other valid arguments should be broken up
into these steps of reasoning.

11.1 More reasons for natural deduction

Using truth tables to show validity does not necessarily give us much
insight. Consider two arguments in TFL:

PvQ,-P.Q
P—-Q,P.Q

Clearly, these are valid arguments. You can confirm that they are valid
by constructing fourline truth tables, but we might say that they make
use of different forms of reasoning. It might be nice to keep track of
these different forms of inference.

One aim of a natural deduction system is to show that particular ar-
guments are valid, in a way that allows us to understand the reasoning
that the arguments might involve.

This is a very different way of thinking about arguments.

With truth tables, we directly consider different ways to make sen-
tences true or false. With natural deduction systems, we manipulate
sentences in accordance with rules that we have set down as good rules.
The latter promises to give us a better insight—or at least, a different
insight—into how arguments work.



The move to natural deduction might be motivated by more than
the search for insight. It might also be motivated by necessizy. Once
our arguments involve 5 atomic sentences, a truth table test for validity
will require 32 lines of truth table. That’s quite a lot to check. But
sometimes we might want to check such arguments.

. Alice, or Betty, or Carys, or Dan, or Ella stole the teacher’s pen.
. It wasn’t Alice.

. It wasn’t Betty,

. It wasn’t Carys,

. It wasn’t Dan

" It was Ella.

Cu s W O

AV (B \Y (C \Y (D VE))), -4, =B, -C, =D .. E

And that will increase exponentially as more atomic sentences get
added. Once an argument involves 20 atomic sentences,

1. Alice, or Betty, or Carys, ..., or Uli or Volker stole the teacher’s
pen.

2. It wasn’t Alice.

3. It wasn’t Betty,

4.
5. It wasn’t Uli,
.. Therefore: It was Volker.

This argument is also valid—as you might be able to tell—but to test
it requires a truth table with 220 = 1048576 lines. In principle, we can
set a machine to grind through truth tables and report back when it
is finished. In practice, complicated arguments in TFL can become
intractable if we use truth tables.

When we get to first-order logic (FOL) (beginning in chapter 19)
the problem gets dramatically worse. There is nothing like the truth
table test for FOL. To assess whether or not an argument is valid, we
have to reason about all interpretations, but, as we will see, there are
infinitely many possible interpretations. We cannot even in principle
set a machine to grind through infinitely many possible interpretations
and report back when it is finished: it will never finish. We either need to
come up with some more efficient way of reasoning about all interpre-



tations, or we need to look for something different. We will be looking
for something different; and we will develop natural deduction.*

The modern development of natural deduction dates from simul-
taneous and unrelated papers by Gerhard Gentzen and Stanistaw
Jaskowski (both in 1934). However, the natural deduction system that
we will consider is based largely around work by Frederic Fitch (first
published in 1952).

Natural deduction selects a few basic rules of inference and natural
forms of reasoning and encodes these into a proof system. We will now
see natural deduction for TFL. This system will form the basis also for
natural deduction for FOL, which will also add rules for the quantifiers.

*There are, in fact, systems that codify ways to reason about all possible interpreta-
tions which can be used for FOL in a similar way to the way we use truth tables for TFL.
They were developed in the 1950s by Evert Beth and Jaakko Hintikka, but we will not
follow this path.



CHAPTER 12

The First
Basic Rules
for TFL: the

basic rules
without

subproofs

We will now describe the various rules one can use. All other valid
arguments should be broken up into steps using these rules. We will
give a particular list of rules, other systems will choose other particular
rules.

The rules we give will often be attached to particular connectives.
This will help guide finding proofs.

The full list of the rules can be found in Appendix B.
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12.1 Reiteration

The very first rule is so breathtakingly obvious that it is surprising we
bother with it at all.

If you already have shown something in the course of a proof, the
reiteration rule allows you to repeat it on a new line. For example:

4 ANB

10 | AAB R4

This indicates that we have written ‘4 A B’ on line 4. Now, at some later
line—line 10, for example—we have decided that we want to repeat this.
So we write it down again. We also add a citation which justifies what
we have written. In this case, we write ‘A’, to indicate that we are using
the reiteration rule, and we write ‘4’, to indicate that we have applied
it to line 4.

Here is a general expression of the rule:

X Rm

The point is that, if any sentence X occurs on some line, then we
can repeat X on later lines. Each line of our proof must be justified by
some rule, and here we have ‘R m’. This means: Reiteration, applied
to line m.

Two things need emphasising. First ‘X’ is not a sentence of TFL.
Rather, it a symbol in the metalanguage, which we use when we want
to talk about any sentence of TFL (see §5). Second, and similarly, ‘m’
is not a numeral that will appear on a proof. Rather, it is a symbol
in the metalanguage, which we use when we want to talk about any
line number of a proof. In an actual proof, the lines are numbered ‘1’,
‘2’, ‘3, and so forth. But when we define the rule, we use variables to
underscore the point that the rule may be applied at any point.



Why might this be useful? For example, we can now show 4 .. 4
is valid using the proof:

1 |4
2 |4 R 2

The rule really becomes useful, though, once we are dealing with sub-
proofs, which we will see in the next chapter.

12.2 Modus Ponens

Consider the following argument:

If Jane is smart then she is fast. Jane is smart. .. Jane is
fast.

This argument is certainly valid. In fact any argument of the form
X->YX Y

is valid. We introduce a rule of natural deduction that encodes this
idea. This is called Modus Ponens.

We introduce a rule of Natural Deduction which allows us to make
this reasoning step. We will call it the “Conditional Elimination” rule
(—E). This choice of name is because we start with something including
the connective — and we derive something without the connective, that
is we have eliminated the — connective. For each connective we will
have introduction and elimination rules, however we will wait until the
next chapter to see Conditional Introduction.

In a simple use of this rule, we might just use it to derive from the
premises § — F and S the conclusion F:

1 S - F
2 | S
3 | F —E1,2

This would then be a natural deduction proof that § — F,§ .. F is
valid.

Each line, except for the premsies which are taken as assumptions,
has to be labelled with the rule it used. So here, we write “—E 1,2” to



say that we obtained line 3 by use of this rule — Elimination applied
to lines 1 and 2.

We can also apply the rule when our X — Y and X are not them-
selves premises but have themselves been derived in the course of the
proof.

1 Premise 1

2 Premise 2

8 S—-F some rule
5 | S another rule
23 | F —E 8,15

It also can be that they appear in a different order, or that one
appears in the premises, for example:

1 S
8 S—>F
23 | F —ES8,1

We write our general rule as:



m XY

Y —E m, n

We can apply it to any X and Y. For example,

1 | (AVB)— -F
2 | (4vB)
3 | -F —E1,2

In this, X is (4V B), and Y is =F.

We would typically now move to introducing Conditional Introduc-
tion. However, we will first do all the other rules of the system, because
Conditional Introduction involves additional complexity.

12.3 Conjunction Introduction

Suppose we want to show that Alice and Beth both came to the party.
One obvious way to do this would be as follows: first we show that Alice
came to the party; then Beth came to the party; then we put these two
demonstrations together, to obtain the conjunction.

Our natural deduction system will capture this thought straightfor-
wardly. In the example given, we might adopt the following symboliza-
tion key:

A: Alice came to the party
B: Beth came to the party

Perhaps we are working through a proof, and we have obtained ‘4’ on
line 8 and ‘B’ on line 15. Then on any subsequent line we can obtain
‘A A B’. For example our proof might contain the following lines:



8 A
15 | B
23 |AANB AL 8, 15

Note that every line of our proof must either be an assumption, or must
be justified by some rule. We cite ‘Al 8, 15’ here to indicate that the line
is obtained by the rule of conjunction introduction (AI) applied to lines
8 and 15. More generally, here is our conjunction introduction rule:

XAY ANl m, n

Two things need emphasising.

First ‘X’ and ‘Y’ are metavariables. They are not particular sen-
tences of TFL but are there to play the role of any particular sentence
(see §5).

Similarly, ‘m’ is not a numeral that will appear on a proof. Rather,
it is a symbol in the metalanguage, which we use when we want to talk
about any line number of a proof. In an actual proof, the lines are
numbered ‘1’, ‘2’, ‘3’, and so forth. But when we define the rule, we use
variables to underscore the point that the rule may be applied at any
point.

To be clear, the statement of the rule is schematic. It is not itself a
proof. ‘X’ and ‘Y” are not sentences of TFL. Rather, they are symbols
in the metalanguage, which we use when we want to talk about any
sentence of TFL (see §5). Similarly, ‘m’ and ‘%’ are not a numerals that
will appear on any actual proof. Rather, they are symbols in the meta-
language, which we use when we want to talk about any line number of
any proof. In an actual proof, the lines are numbered ‘1’, ‘2’, ‘3’, and
so forth, but when we define the rule, we use variables to emphasize
that the rule may be applied at any point. The rule requires only that



we have both conjuncts available to us somewhere in the proof. They
can be separated from one another, and they can appear in any order.

The rule is called ‘conjunction infroduction’ because it introduces
the symbol ‘A’ into our proof where it may have been absent.

12.4 Conjunction Elimination

Correspondingly, we have a rule that e/iminates that symbol. Suppose
you have shown that Alice and Beth both came to the party. You are
entitled to conclude that Alice came to the party. Equally, you are
entitled to conclude that Beth came to the party. Putting this together,
we obtain our conjunction elimination rule(s):

m XANY

X AE m

and equally:

m XANY

Y AE m

The point is simply that, when you have a conjunction on some
line of a proof, you can obtain either of the conjuncts by AE. (One
point, might be worth emphasising: you can only apply this rule when
conjunction is the main logical operator. So you cannot infer ‘D’ just
from ‘C v (D AE))

Even with just these two rules, we can start to see some of the power
of our formal proof system. Consider:

1. [(AVB) - (CVD)]A-(EVF)



.. Therefore: =(EV F) A [(AV B) — (C Vv D)]

The main logical operator in both the premise and conclusion of this
argument is ‘A’. In order to provide a proof, we begin by writing down
the premise, which is our assumption. We draw a line below this: ev-
erything after this line must follow from our assumptions by (repeated
applications of) our rules of inference. So the beginning of the proof
looks like this:

1 | [(AV B) > (CV D) A=(EVF)

From the premise, we can get each of the conjuncts by AE. The proof
now looks like this:

1 | [(AV B) > (CVD)]A=(EVF)
2 | [(4V B) - (C vV D)] AE 1
3 | =(EVF) AE 1

So by applying the Al rule to lines 3 and 2 (in that order), we arrive at
the desired conclusion. The finished proof looks like this:

1 |[(AVB) > (CVD)]A-(EVF)

2 | [(A4Vv B) — (CvV D) AE 1
3 | (EVF) AE 1
4

—~(EVF)A[(AV B) = (CV D)] AL 3, 2

This is a very simple proof, but it shows how we can chain rules of
proof together into longer proofs. In passing, note that investigating
this argument with a truth table would have required a staggering 256
lines; our formal proof required only four lines.

It is worth giving another example. Way back in §??, we noted that
this argument is valid:

AN(BAC) .. (ANB)AC

To provide a proof corresponding with this argument, we start by writ-
ing:

1 |AANBAC)



From the premise, we can get each of the conjuncts by applying AE
twice. We can then apply AE twice more, so our proof looks like:

1 |[AAN(BACG)

2 | 4 AE 1
3 | BAC AE 1
4 | B AE 3
5 |C AE 3

But now we can merrily reintroduce conjunctions in the order we
wanted them, so that our final proof is:

1 |[AAN(BAQG)

2 |4 AE 1
3 | BAC AE 1
4 | B AE 3
5 |C AE 3
6 | ANB AL 2, 4
7 | (AANB)AC AL 6,5

Recall that our official definition of sentences in TFL only allowed con-
junctions with two conjuncts. The proof just given suggests that we
could drop inner brackets in all of our proofs. However, this is not
standard, and we will not do this. Instead, we will maintain our more
austere bracketing conventions. (Though we will still allow ourselves
to drop outermost brackets, for legibility.)

Let me offer one final illustration. When using the Al rule, there is
no requirement that it is applied to two different sentences. So we can
formally prove ‘4’ from ‘4’ as follows:

1 |4
2 |ANA Al 1
3 |4 AE 2



Simple, but effective. In fact this shows that we didn’t need to have the
rule of Reiteration as we could always argue by Al then AE. But for ease
we will allow Reiteration as a basic rule so you don’t have to argue this
way.

12.5 Disjunction Introduction

Suppose Alice came to the party. Then Alice or Beth came to the party.
After all, to say that Alice or Beth came to the party is to say something
weaker than to say that Alice came to the party.

Let me emphasize this point. Suppose Alice came to the party. It
follows that Alice came to the party or I am the Queen of England.
Equally, it follows that Alice or the Queen came to the party. Equally,
it follows that Alice came to the party or that God is dead. Many of
these are strange inferences to draw, but there is nothing logically wrong
with them (even if they maybe violate all sorts of implicit conversational
norms).

Armed with all this, we present the disjunction introduction rule(s):

XvY VI m

and

YvX VI m

Notice that Y can be any sentence whatsoever, so the following is a
perfectly acceptable proof:



1 | M
2 | MV ([(4 B) — (CAD)] < [EAF]) vI1

Using a truth table to show this would have taken 128 lines.

12.6 Law of Excluded Middle

We will actually add another rule for how to introduce a disjunction.
There are special kinds of disjunctions that don’t need further justifi-
cation: sentences of the form X vV —=X. In §?? we saw that A V =4 is
a tautology: it is true on all valuations. More generally, any sentence
of the form X vV —X is a tautology. The rule Law of Excluded Middle
encodes this fact: it simply says that you are always allowed to write
X Vv -X:

X Vv-X LEM

As always, X can be whatever you want, e.g. (4 A (B — C)). Then
the rule tells us, e.g. that you can write (AA (B — C))V—(4AA(B — (C))
on any line of the proof.

The law of Excluded Middle is often used in combination with Dis-
junction Elimination. However, we will not yet introduce Disjunction
Elimination. It will be introduced in §13.2. That’s when we’ll see the
full power of the LEM rule.

12.7 Strategies

We have a few more rules to introduce, but at this point we pause to
mention a strategies to come up with proofs yourself:

Work backwards from what you want. The ultimate goal is to ob-
tain the conclusion. Look at the conclusion and ask what the introduc-
tion rule is for its main logical operator. This gives you an idea of what
should happen just before the last line of the proof. Then you can treat
this line as if it were your goal. Ask what you could do to get to this
new goal.



For example: If your conclusion is a conjunction X AY, plan to use
the Al rule. This requires finding both X and Y.

Work forwards from what you have. When you are starting a proof,
look at the premises; later, look at the sentences that you have obtained
so far. Think about the elimination rules for the main operators of these
sentences. These will often tell you what your options are.

For a short proof, you might be able to eliminate the premises and
introduce the conclusion. A long proof is formally just a number of
short proofs linked together, so you can fill the gap by alternately work-
ing back from the conclusion and forward from the premises.

Sometimes, though, this won’t yet be possible. For that, we need to
finish off our list of the basic rules of natural deduction.

Practice exercises

A. The following ‘proofs’ are incorrect. Explain the mistakes they make.

1 |AANBAC)

2 |(BVvC)—>D

3 | B AE 1
4 |BvC vI 3

5 | D —E 4,2

B. The following proofs are missing their citations (rule and line num-
bers). Add them, to turn them into bona fide proofs. Additionally, write
down the argument that corresponds to each proof.

PAS

S—R

S

R

G N

AV E

C. Give a proof corresponding to each of the following arguments:



1. AN(BVC) .. (BVC)AA
2. (AV—|A)—>B .. B



CHAPTER 13

More Basic
Rules for

TFL: the basic
rules with

subproofs

To introduce a conditional we need to introduce another kind of thing:
a sub-proof.
13.1 Conditional Introduction

The following argument is valid:

Alice came to the party. Therefore if Beth came to the party,
then both Alice and Beth came.

If someone doubted that this was valid, we might try to convince them
otherwise by explaining ourselves as follows:
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Assume that Alice came to the party. Now, additionally
assume that Beth came to the party. Then by conjunc-
tion introduction—which we just discussed—both Alice
and Beth came. Of course, that’s conditional on the as-
sumption that Beth came to the party. But this just means
that, if Beth came to the party, then both Alice and Beth
came.

We might write this in a form that is closer to our natural deduction
format:

Alice came to the party

| Beth came to the party

‘ Both Alice and Beth came to the party

= W N

Thus, if Beth came to the party, both Alice and Beth
came.

The natural deduction format of lines and indentations is there to re-
place the words and context like “suppose that”. The “suppose that”
used on line 2 is represented in the formal system by the indentation
and additional line. And like the premises, this line does not need to
be justified, it is taken as an assumption, and a line underneath it is
drawn. What comes underneath this, on line 3, is still indented, and is
within the context of the supposition that Beth came to the party. But
once we move to line 4, the additional assumption is no longer in place.
It has been discharged.

Now let’s present this again a little more formally: We started with
one premise, ‘Alice came to the party’, thus:

1 |4
The next thing we did is to make an additional assumption (‘Beth came
to the party’), for the sake of argument. To indicate that we are no

longer dealing merely with our original assumption (‘4’), but with some
additional assumption, we continue our proof as follows:

1 |4

[

ALl 2
—12-3



Note that we are nof claiming, on line 2, to have proved ‘B’ from line 1,
so we do not need to write in any justification for the additional assump-
tion on line 2. We do, however, need to mark that it is an additional
assumption. We do this by drawing a line under it (to indicate that it
is an assumption) and by indenting it with a further vertical line (to
indicate that it is additional).

With this extra assumption in place, we are in a position to use AL
So we can continue our proof:

1 |4
2 B
3 AANB ALl 2

So we have now shown that, on the additional assumption, ‘B’, we can
obtain ‘4 A B’. We can therefore conclude that, if ‘B’ obtains, then so
does ‘A A B’. Or, to put it more briefly, we can conclude ‘B — (4 A B)’:

A

B
AAB AL, 2

S R

B— (AAB) —I12-3

Observe that we have dropped back to using one vertical line. We have
discharged the additional assumption, ‘B’, since the conditional itself
follows just from our original assumption, ‘4’.

The general pattern at work here is the following. We first make
an additional assumption, X; and from that additional assumption, we
prove Y. In that case, we know the following: If X, then Y. This is
wrapped up in the rule for conditional introduction:




There can be as many or as few lines as you like between lines m
and 2.

It will help to offer a second illustration of —I in action. Suppose
we want to consider the following:

P—-0,0—-R..P—>R

We start by listing both of our premises. Then, since we want to ar-
rive at a conditional (namely, ‘P — R’), we additionally assume the
antecedent to that conditional. Thus our main proof starts:

1 |P—-0Q
2 |0—R

[

Note that we have made ‘P’ available, by treating it as an additional
assumption, but now, we can use —E on the first premise. This will
yield ‘Q’. We can then use —E on the second premise. So, by assuming
‘P’ we were able to prove ‘R’, so we apply the —I rule—discharging
‘P’—and finish the proof. Putting all this together, we have:

1 |P—-0Q

2 |0—R

3 p

4 4] —E1,3
5 R —E 24
6 |P—R —I13-5

The subproof also doesn’t need to start immediately. For example:



(P—>0)AO0
Q—-R
P—-0

SN S SN CCR \C R
~

P—>R

AE 1

—E 3,4
—-E 2,5
—I14-6

13.2 Disjunction Elimination

The disjunction elimination rule also makes use of subproofs.
Suppose that Alice came to the party or Beth came to the party.
What can you conclude? Not that Alice came to the party; it might be
that Beth came to the party instead. Equally, not that Beth came to
the party; for it might be that only Alice came. Disjunctions, just by

themselves, are hard to work with.

But suppose that we could somehow show both of the following:
first, that Alice coming to the party entails that it was fun: second, that
Beth coming to the party entails that it was fun. Then if we know that
Alice or Beth came to the party, then we know that either way, it was
fun. This insight can be expressed in the following rule, which is our

disjunction elimination (VE) rule:



m XvY
i X
J
k
l Z
Z VE m, i—j, k-1

This is obviously a bit clunkier to write down than our previous
rules, but the point is fairly simple. Suppose we have some disjunction,
X VY. Suppose we have two subproofs, showing us that Z follows from
the assumption that X, and that Z follows from the assumption that
Y. Then we can infer Z itself. As usual, there can be as many lines as
you like between i and j, and as many lines as you like between £ and
. Moreover, the subproofs and the disjunction can come in any order,
and do not have to be adjacent.

Some examples might help illustrate this. Consider this argument:

(PANQ)V(PAR)..P

A proof corresponding to this argument is:

1 [(PAQ)V(PAR)

2 PAQ

3 P AE 2

4 PAR

5 P AE 4

6 | P VE 1, 2-3, 4-5




Consider the following brain teaser:*

Three people are standing in a row looking at each other.

~ ~
) O @

Alice Bob Charlie

Alice is happy. Charlie is not happy. Is there someone who
is happy who is looking at someone who is not happy?

... Think about it!

...Answer: Yes. Our Disjunction Elimination rule along with the Law
of Excluded Middle allow us to show this. We can demonstrate this in
the following argument, which we present in a pseudo-formal style.”

1 | Bob is either happy or he’s not happy
Suppose Bob is happy

Then happy Bob is looking at not-happy Charlie
So someone who is happy is looking at someone who is not

Suppose Bob is not happy

Then happy Alice is looking at not-happy Bob

So someone who is happy is looking at someone who is not

o B N =2 T S T G U )

Therefore, someone who is happy is looking at someone who is not.

Are you convinced now that someone who is happy is looking at
someone who is not happy? If not, find a friend and work through
it together. Sometimes it can really help to try walking through the
argument together.

Coming up with this sort of argument does just take that moment
of inspiration to see how this argument will go (that’s why it’s a brain

!Originally by Hector Levesque.
*Though, actually, this is most naturally formulated as a validity claim of First Order
Logic. We’ll walk through the formal proof as formulated in First Order Logic in §30.2.



teaser). This is often the case with arguments that involve the law of
excluded middle. We pick it out of nowhere and have to use our inspi-
ration to see how it might be useful. But hopefully, with more examples
yow’ll become familiar with cases where it might be of use. A strategy
that might help is: it’s a backup option if everything else fails. If it
doesn’t look like there’s any elimination rules to use on your premises
or any introduction rules that can get you to your conclusion, then
perhaps LEM is the way forwards.
One more example:

P .. (PAD)V (P A-D)

Here is a proof corresponding with the argument:

1 [P

2 7V -D LEM

3 D

4 7/\ D ALl 3

5 (P AD)V (P A-D) vI 4

6 -D

7 P A-D AL1 6

8 (PAD)V (P A-D) vl7

9 | (PAD)V (P A-D) VE 2, 3-5, 6-8

13.3 Negation

Negation Introduction

If assuming something leads you to a contradiction, then the assump-
tion must be wrong. This thought motivates the following rule:



k -Y

-X -I m—k

It does not matter whether in the subproof you first derive ¥ and
then derive =Y or whether you first derive =Y and the derive Y. It is
only important that in the subproof you derive both ¥ and -Y.

To see this in practice, and interacting with negation, consider this

proof:

1 |D

2 | -D

3 D R1

4 -D R 2

5 | ==D -1 2-4

Negation Elimination

The negation elimination rule is quite similar. We motivate the rule by
the following thought: If assuming that something is false leads you to
a contradiction, then that assumption must be wrong — and so that
‘something’ must in fact be true. In other words, if we assume -X
and derive a contradiction, then we can conclude X: we eliminate the
negation.



X -E m—-k

Formally, the rule is very similar to —I, but they are different.3 They
switch X and —X. —I introduced a negation, but —E eliminates a nega-
tion.

Sometimes this is called the rule of indirect proof, reductio ad absurdum
or proof by contradiction. It allows us to prove something by showing that
its negation leads to contradiction. This technique is very common in
mathematics.4

To see this rule in action, here is an example proof using it:

1 | --D
o | [-p

3 —~-D R1

4 -D R2

5 | D -E 4,3

Here X is D and Y is —=D.
This rule also allows us to prove that anything follows from a con-
tradiction. For example:

3There are logicians who accept —I but reject —E. They are called “intuitionists.”
Intuitionists reject the law of excluded middle. They don’t buy our basic assumption that
every sentence has one of two truth values, true or false. For intuitionists, X and —-—-X
are not equivalent.

4For example it is used to show there are infinitely many prime numbers. We assume,
for contradiction, that there are not infinitely many primes, so there must be a biggest
prime number. We can then use this assumption to construct a further prime number
which is larger than the biggest prime number. This is a contradiction. We can thus
conclude that there are infinitely many primes.



S o 0 N

-4
-B
A R1
-4 R2
B -E 3-5

13.4 Additional assumptions and subproofs

The rules we have just seen involve the idea of making additional as-
sumptions. These need to be handled with some care.
Consider this proof:

= W N

A

B
B R2

B—> B —12-3

This is perfectly in keeping with the rules we have laid down already,
and it should not seem particularly strange. Since ‘B — B’ is a tautol-
ogy, no particular premises should be required to prove it.

But suppose we now tried to continue the proof as follows:

G W NN

A
_B

B R2
B—B —I2-3

B naughty attempt to invoke —E 4, 3

If we were allowed to do this, it would be a disaster. It would allow
us to prove any atomic sentence letter from any other atomic sentence
letter. However, if you tell me that Anne is fast (symbolized by ‘4’),



we shouldn’t be able to conclude that Queen Boudica stood twenty-feet
tall (symbolized by ‘B’)! We must be prohibited from doing this, but
how are we to implement the prohibition?

We can describe the process of making an additional assumption as
one of performing a subproof: a subsidiary proof within the main proof.
When we start a subproof, we draw another vertical line to indicate that
we are no longer in the main proof. Then we write in the assumption
upon which the subproof will be based. A subproof can be thought of
as essentially posing this question: what could we show, if we also make
this additional assumption?

When we are working within the subproof, we can refer to the ad-
ditional assumption that we made in introducing the subproof, and to
anything that we obtained from our original assumptions. (After all,
those original assumptions are still in effect.) At some point though,
we will want to stop working with the additional assumption: we will
want to return from the subproof to the main proof. To indicate that
we have returned to the main proof, the vertical line for the subproof
comes to an end. At this point, we say that the subproof is closed:

A subproof is CLOSED when the vertical line for the subproof
comes to an end. At that point we say the assumption has been
DISCHARGED

We typically do this when we use one of our rules that involve sub-
proofs, such as —I. We introduced the assumption X to allow us to
conclude Y; and this reasoning allows us to close the subproof and
conclude X — Y, which no longer relies on the assumption X. Hav-
ing closed a subproof, we have set aside the additional assumption, so
it will be illegitimate to draw upon anything that depends upon that
additional assumption. Thus we stipulate:

Any rule whose citation requires mentioning individual lines
can mention any earlier lines, except for those lines which occur
within a closed subproof.

Put another way: you cannot refer back to anything that was
obtained using discharged assumptions

This stipulation rules out the disastrous attempted proof above. The
rule of —E requires that we cite two individual lines from earlier in the
proof. In the purported proof, above, one of these lines (namely, line



4) occurs within a subproof that has (by line 6) been closed. This is
illegitimate.

Subproofs, then, allow us to think about what we could show, if we
made additional assumptions. The point to take away from this is not
surprising—in the course of a proof, we have to keep very careful track
of what assumptions we are making, at any given moment. Our proof
system does this very graphically. (Indeed, that’s precisely why we have
chosen to use this proof system.)

Once we have started thinking about what we can show by making
additional assumptions, nothing stops us from posing the question of
what we could show if we were to make even more assumptions. This
might motivate us to introduce a subproof within a subproof. Here is
an example which only uses the rules of proof that we have considered
so far:

1 |4

2 _B

3 _C

4 AAB A1, 2
5 C - (AAB) —I 34
6 | B— (C— (AAB)) —-I12-5

Notice that the citation on line 4 refers back to the initial assumption
(on line 1) and an assumption of a subproof (on line 2). This is perfectly
in order, since neither assumption has been discharged at the time (i.e.
by line 4).

Again, though, we need to keep careful track of what we are assum-
ing at any given moment. Suppose we tried to continue the proof as
follows:



B— (C— (AAB)) —I2-5

1 |4

2 _B

3 _C

4 AAB AL, 2
5 C —> (AN B) —I 34
6

7

C — (AAB) naughty attempt to invoke —I 3—4

This would be awful. If we tell you that Anne is smart, you should
not be able to infer that, if Cath is smart (symbolized by ‘C’) then both
Anne is smart and Queen Boudica stood 2o-feet tall! But this is just
what such a proof would suggest, if it were permissible.

The essential problem is that the subproof that began with the as-
sumption ‘C’ depended crucially on the fact that we had assumed ‘B’
on line 2. By line 6, we have discharged the assumption ‘B’: we have
stopped asking ourselves what we could show, if we also assumed ‘B’.
So it is simply cheating, to try to help ourselves (on line 7) to the sub-
proof that began with the assumption ‘C’. Thus we stipulate, much as
before:

Any rule whose citation requires mentioning an entire subproof
can mention any earlier subproof, except for those subproofs
which occur within some other closed subproof.

The attempted disastrous proof violates this stipulation. The sub-
proof of lines 3—4 occurs within a subproof that ends on line 5. So it
cannot be invoked in line 7.

It is always permissible to open a subproof with any assumption.
However, there is some strategy involved in picking a useful assump-
tion. Starting a subproof with an arbitrary, wacky assumption would
just waste lines of the proof. In order to obtain a conditional by —I,
for instance, you must assume the antecedent of the conditional in a
subproof.

Equally, it is always permissible to close a subproof and discharge
its assumptions. However, it will not be helpful to do so until you have
reached something useful.



13.5 Proof Strategies

These are all of the basic rules for the proof system for TFL.
For ease of reference, they’re listed again in appendix B.

There is no simple recipe for proofs, and there is no substitute for
practice. Here, though, are some rules of thumb and strategies to keep
in mind.

Work backwards from what you want. The ultimate goal is to ob-
tain the conclusion. Look at the conclusion and ask what the introduc-
tion rule is for its main logical operator. This gives you an idea of what
should happen just before the last line of the proof. Then you can treat
this line as if it were your goal. Ask what you could do to get to this
new goal.

For example: If your conclusion is a conditional X — Y, plan to
use the —I rule. This requires starting a subproof in which you assume
X. The subproof ought to end with Y. So, what can you do to get Y?

Work forwards from what you have. When you are starting a proof,
look at the premises; later, look at the sentences that you have obtained
so far. Think about the elimination rules for the main operators of these
sentences. These will often tell you what your options are.

For a short proof, you might be able to eliminate the premises and
introduce the conclusion. A long proof is formally just a number of
short proofs linked together, so you can fill the gap by alternately work-
ing back from the conclusion and forward from the premises.

Try proceeding indirectly. If you cannot find a way to show X di-
rectly, try starting by assuming —X. If a contradiction follows, then you
will be able to obtain X by —E.

Law of Excluded Middle. If youre hitting a blank, try seeing if
there’s some instance of LEM that might help you. These arguments
do just need some inspiration to see the instance of LEM that’ll be

helpful.

Persist. Try different things. If one approach fails, then try something
else.



If the argument is actually valid (which is defined using truth-tables)
there will be a proof of it somehow...

Practice exercises

A. The following two ‘proofs’ are incorrect. Explain the mistakes they
make.

1 | -L—> AAL)

2 Lv-L LEM

3 -L

4 A —E1,3
5 L

6 O -4

7 L R5

8 -L R3

9 A -E 6-8
10 |4 VE 2, 3-4, 5-9
1 |AAN(BAC)

2 |(BVvC)—>D

3 | B AE 1

4 |BvC vI 3

5 | D —E 4,2




B. The following three proofs are missing their citations (rule and line
numbers). Add them, to turn them into bona fide proofs. Additionally,
write down the argument that corresponds to each proof.

— (S " R

S v o L N

PAS

S — R

S
R
RVE

A— D

AANB

A
D
DVE

(AANB) > (DVE)

© 0 NN S R W N -

[ —
= o

=L

JVL
J

J




CHAPTER 14

Proofs and
Validity

The system of rules we have set up is not just a game. It helps us
understand the validity of arguments.

An argument Xj,Xy,...,X, .. Y may have a proof in the system of
natural deduction. Such a proof may look something like:

1 | X

2 | Xy

n | X,
Y

That is, it will start with the premises as assumptions, and proceed
following the rules we have given and finishing with the conclusion. It
might also have subproofs along the way, something like:
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1 | X

2 | X

n X,

m Some additional assumption

m | Maybe some more assumptions
Y

But any subproofs need to have been closed by the time we get to Y.
So, for example if we gave

this does not count as a proof corresponding to the argument 4 .. B.
But

1 |4

2 _B

3 B R2

4 |B—B —12-3

counts as a proof corresponding to 4 .. B — B as the subproof has
been closed on line 4.



So we have now said when we have a proof in our natural deduction
system that corresponds to a particular argument. If we can find a proof
then we know that the argument is valid.

If there is a proof in natural deduction corresponding to the
argument Xj ... X, .. Y, then this argument X7 ... X, .. Y is
valid.

This property of our proof system is called SOUNDNESS. It holds
because we only chose rules that matched valid reasoning steps. Recall
that A — B,B .. A is invalid. Had we added a rule such as

n X-Y
m Y
X Do not do this. Does not follow from n, m

we would then have been able to construct a proof corresponding
to the invalid argument 4 — B,B .. A. We do not have such a rule in
our system. All the rules we gave in our system will result in proofs of
valid arguments.

We can actually strengthen the link between proofs corresponding
to arguments and those argument’s validity:

If an argument is valid, then there is a proof of it in natural
deduction.

This property of our proof system is called COMPLETENESS.

So for every valid argument there will be some proof. This doesn’t
mean it is always easy to come up with such a proof, but there will be
one. Persist!



Practice exercises

A. Show that each of the following arguments are valid using natural
deduction:

J=-J]

0 (QA-0) .. ~Q

A—> (B—->C)..(AANB) > C
KANL Ko L
(CAD)VE. .. EVD

Ao BB C.o. A C
-F-GF—-H.GVH
(ZANK)V(KAM),K - D..D
PA(QVR),P—>-R.QVE
ST . Se(TVS)

. =(P—>0).. -0
-(P—>Q)..P

CL O o ® b K

[
L H



Derived rules
for TFL

In §12, we introduced the basic rules of our proof system for TFL. In
this section, we will add some additional rules to our system. These
will make our system much easier to work with. (However, in §16 we
will see that they are not strictly speaking necessary.)

15.1 Disjunctive syllogism

Here is a very natural argument form.

Elizabeth is in Massachusetts or in DC. She is not in DC.
So, she is in Massachusetts.

This inference pattern is called disjunctive syllogism. We add it to our
proof system as follows:

m XvY
n -X
Y DS m, n

and
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m | XVY
n -Y

X DS m, n

As usual, the disjunction and the negation of one disjunct may occur
in either order and need not be adjacent.

15.2 Modus tollens

Another useful pattern of inference is embodied in the following argu-
ment:

If Mitt has won the election, then he is in the White House.
He is not in the White House. So he has not won the elec-
tion.

This inference pattern is called modus tollens. The corresponding rule
is:

m X->Y
n -Y
-X MT m, n

As usual, the premises may occur in either order.

15.3 Double-negation

A sentence ——X is always logically equivalent to X. We can add rules to
our system that encode this idea: allowing us to immediately eliminate
or introduce double negations:

m =X

X DNE m




m | X
=X DNI m

That said, you should be aware that in ordinary language we can
sometimes speak in a way that is similar to, but not quite, a double
negation. Consider: Jane is not unhappy’. Arguably, one cannot in-
fer ‘Jane is happy’. Perhaps the speaker is using this unusual indirect
phrasing to draw attention to the possible difference between ‘unhappy’
and ‘not unhappy’. Perhaps what they mean to suggest is that ‘Jane is in
a state of profound indifference’. Here, then, Jane is unhappy’ should
not be thought of as equivalent to ‘It is not the case that Jane is happy’,
and it should not be symbolised as =H but should rather be a separate
atomic sentence. So Jane is not unhappy’ is not then seen as a double
negation.

15.4 Explosion

From a contradiction anything follows. This is called the rule of explo-
sion. It is also sometimes called ex falso quod libet.

m | X
n -X
Y Explosion m, n

15.5 De Morgan Rules

Our final additional rules are called De Morgan’s Laws. (These are
named after Augustus De Morgan.) The shape of the rules should be
familiar from truth tables.

The first De Morgan rule is:



m (X AY)

-X VY DeM m

The second De Morgan is the reverse of the first:

m -XVv-Y
(X AY) DeM m

The third De Morgan rule is the dual of the first:

m -(XVY)

-X AY DeM m

And the fourth is the reverse of the third:

m X A=Y

~(XVY) DeM m

There are many more rules one could add to the system as derived rules.
But these are all the ones we’ll introduce.



Practice exercises

A. The following proofs are missing their citations (rule and line num-
bers). Add them wherever they are required:

1 | w—-B 1 | Z=(CA-N)
2 |ANW 2 -Z — (N A=0)
3 | BV (JAK) 3 |zv-z
4 |w 4 z
5 | -B 5 CA-N
6 | JAK 6 1%
7 | K 7 NvC

8 Z—- (NvQ(0)
1 |-0—-L 9 -7
2 |Lv~-0 10 N A=C
3 ~L 11 N
4 -0 12 NvC
5 L 13 |-z > NV
6 | ==L 14 |NvC
7 | L

B. Give a proof for each of these arguments:

.EVF, FVG,-F. . ENG

.MV (N —>M).: -M—-N

. MVN)A(OVP),N—>P,-P. . MAO
.AANB)V(AANC),-(AAND),DVM ..M

SR ]



CHAPTER 16

Derived rules

In this section, we will see why we introduced the rules of our proof
system in two separate batches. In particular, we want to show that the
additional rules of §15 are not strictly speaking necessary, but can be
derived from the basic rules of §12.

16.1 Derivation of Disjunctive syllogism

Suppose that you are in a proof, and you have something of this form:

m | XVY
n -X

You now want, on line £, to prove Y. You can do this with the rule of

DS, introduced in §15, but equally well, you can do this with the basic
rules of §12:
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m XvY

n -X

k X

k+1 _—|Y

k+2 X R £

k+3 -X Ran

k+4 Y -Ek+1-k+3

k+5 Y

k+6 7 Rk+5

k+7 | Y VE m, k—=k +4, kK +5-k + 6

To be clear: this is not a proof. Rather, it is a proof scheme. (This
is why we use letters like m and £ to label the lines of the proof rather
than numbers.) Whatever sentences of TFL we plugged in for ‘X’ or
‘Y, and whatever lines we were working on, we could produce a bona
fide proof. So you can think of this as a recipe for producing proofs.

Indeed, it is a recipe which shows us that, anything we can prove
using the rule DS, we can prove (with a few more lines) using just the
other rules of §12.

16.2 Derivation of Modus Tollens

Suppose in the course of you proof you already have X — Y, say on
line m, and =Y on line n. At some later line, £, you want to get —.X.
You can do this with the rule of Modus Tollens (MT), introduced in
§15. But you could also do this with the basic rules of §12:



m X-Y

n -Y

k X

k+1 -Y Rn

k+2 Y —Em, k
k+3 | X -1 k—k +2

Again, the rule of MT can be derived from the basic rules of §12.

16.3 Derivation of Double-negation rules

Consider the following deduction schema:

m X

j -X

j+1 X R m

j+2 -X R

j+3 | =X AL j—j +2(:):
and

m =X

i =X

j+1 =X Rm

j+2 -X R j

j+3 | X -E j-j+2

So again, we can derive the double negations rules from the bdasic rules
of §12.



16.4 Derivation of Explosion

Here is a demonstration of how we could derive explosion using the

basic rules:

m
n

n+1
n+2

n+3

X
-X
-Y
X Rm
-X Rn
Y -En+1-n+3

16.5 Derivation of De Morgan rules

Here is a demonstration of how we could derive the first De Morgan

rule:

m

J

k
k+1
k+2
k+3
k+4
k+5
k+6
k+7
k+8

(X AY)

Xv-X

X

_Y
XAY
(X AY)

Y

-XvVv-Y

-X

-XVv-Y

X V=Y

LEM

ALk E+1
Rm
-1k+1-k+3
VIEk+4

vIk+6
VE j, k—-k +5, k +6-k+7

Here is a demonstration of how we could derive the second De Morgan

rule:



m+1

k+1
k+2
k+3
k+4
l

[+1
[+2
[+3
[+4

-Y
(X AY)

(X AY)

AE k
Rm+1
-1k-k+2

AE k

REk+4

-I1-1+2

VEm, m+1-k+3,k+4-1+3

Similar demonstrations can be offered explaining how we could derive
the third and fourth De Morgan rules. These are left as exercises.

Practice exercises

A. Provide proof schemes that justify the addition of the third and
fourth De Morgan rules as derived rules.

B. The proofs you offered in response to the practice exercises of §§15—
18 used derived rules. Replace the use of derived rules, in such proofs,
with only basic rules. You will find some ‘repetition’ in the resulting
proofs; in such cases, offer a streamlined proof using only basic rules.
(This will give you a sense, both of the power of derived rules, and of
how all the rules interact.)



CHAPTER 17

Soundness
and

completeness

(Non-examinable) A very important result:

A TFL argument is valid if and only if it can be given a proof
in this natural deduction system.

In this chapter, we explain a bit more about how such an argument
would go. Soundness is proved in more detail in §??.
Logical Consequence

For this chapter we will make use of a further symbols:

We use the symbol k as shorthand for logical consequence, that is,
instead of saying that the TFL-sentence Y. is a logical consequence of
the TFL sentences Xj,Xy,. .. and X,, we will abbreviate this by:

X1,Xo,.... X, Y
The symbol ‘€’ is known as the double-turnstile, since it looks like a turn-

stile with two horizontal beams.
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Let us be clear be clear. ‘€’ is not a symbol of TFL. Rather, it is a
symbol of our metalanguage, augmented English (recall the difference
between object language and metalanguage from §5). So the metalan-
guage sentence:

e PP—>QEQ
is just an abbreviation of the sentence:

e The TFL sentences ‘Q’ is a logical consequence of ‘P’ and ‘P —
Q’
Note that there is no limit on the number of TFL sentences that can
be mentioned before the symbol ‘F’. Indeed, we can even consider the
limiting case where there is no sentence (this should ring familiar from
§6.3):
EY

Proof

The following expression:
Xl,XQ,. .. ,Xn FY

means that there is some proof which starts with assumptions among
X1,Xs,. .., X, and ends with Y (and contains no undischarged assump-
tions other than those we started with). Derivatively, we will write:

FX

to mean that there is a proof of X with no assumptions.

The symbol ‘+ is called the single turnstile. We want to emphasize
that this is not the double turnstile symbol (‘¢’) that we introduced for
‘logical consequence’. The single turnstile, ‘+’, concerns the existence
of proofs; the double turnstile, ‘€’, concerns the existence of valuations
(or interpretations, when used for FOL). They are very different notions.

17.1  Their equivalence

However, it turns out that they are equivalent. That is:

X1,Xo,...,. X, v Y
if and only if
X1,Xo,...,. X, Y



A full proof here goes well beyond the scope of this book. However, we
can sketch what it would be like.

Soundness

This argument from F to  is the problem of SOUNDNESS. A proof system
is SOUND if there are no derivations of arguments that can be shown
invalid by truth tables. Demonstrating that the proof system is sound
would require showing that any possible proof is the proof of a valid
argument. It would not be enough simply to succeed when trying to
prove many valid arguments and to fail when trying to prove invalid
ones.

The proof that we will sketch depends on the fact that we initially
defined a sentence of TFL using a inductive definition (see p. 32). We
could have also used inductive definitions to define a proper proof in
TFL and a proper truth table. (Although we didn’t.) If we had these
definitions, we could then use a inductive proof to show the soundness of
TFL. A inductive proof works the same way as a inductive definition.
With the inductive definition, we identified a group of base elements
that were stipulated to be examples of the thing we were trying to define.
In the case of a TFL sentence, the base class was the set of sentence
letters 4, B, C, .... We just announced that these were sentences. The
second step of a inductive definition is to say that anything that is built
up from your base class using certain rules also counts as an example of
the thing you are defining. In the case of a definition of a sentence, the
rules corresponded to the five sentential connectives (see p. 32). Once
you have established a inductive definition, you can use that definition
to show that all the members of the class you have defined have a certain
property. You simply prove that the property is true of the members
of the base class, and then you prove that the rules for extending the
base class don’t change the property. This is what it means to give a
inductive proof.

Even though we don’t have a inductive definition of a proof in TFL,
we can sketch how a inductive proof of the soundness of TFL would go.
Imagine a base class of one-line proofs, one for each of our basic rules of
inference. The members of this class would look like this X, Y + X A Y;
XANYFrX; XVY,-X FY ... etc. Since some rules have a couple
different forms, we would have to have add some members to this base
class, for instance X A Y + Y Notice that these are all statements in
the metalanguage. The proof that TFL is sound is not a part of TFL,
because TFL does not have the power to talk about itself.



You can use truth tables to prove to yourself that each of these one-
line proofs in this base class is valid.. For instance the proof X,Y r
X A'Y corresponds to a truth table that shows X,Y £ X A Y This
establishes the first part of our inductive proof.

The next step is to show that adding lines to any proof will never
change a valid,. proof into an invalid. one. We would need to do this
for each of our basic rules of inference. So, for instance, for AI we need
to show that for any proof Xi, ..., X, + Y adding a line where we use
Al to infer Z AV, where Z AV can be legitimately inferred from Xj, ...,
Xn, Y, would not change a valid proof into an invalid proof. But wait,
if we can legitimately derive Z A V from these premises, then Z and V
must be already available in the proof. They are either already among
X, ..., Xy, B, or can be legitimately derived from them. As such, any
truth table line in which the premises are true must be a truth table line
in which Z and V are true. According to the characteristic truth table
for A, this means that Z A V is also true on that line. Therefore, Z A V
validly follows from the premises. This means that using the AE rule
to extend a valid proof produces another valid proof.

In order to show that the proof system is sound, we would need
to show this for the other inference rules. Since the derived rules are
consequences of the basic rules, it would suffice to provide similar ar-
guments for the other basic rules. This tedious exercise falls beyond
the scope of this book.

So we have shown that X + Y implies X £ Y. What about the other
direction, that is why think that every argument that can be shown valid
using truth tables can also be proven using a derivation.

Completeness

This is the problem of completeness. A proof system has the property
of COMPLETENESS if and only if there is a derivation of every seman-
tically valid argument. Proving that a system is complete is generally
harder than proving that it is sound. Proving that a system is sound
amounts to showing that all of the rules of your proof system work the
way they are supposed to. Showing that a system is complete means
showing that you have included a/l the rules you need, that you haven’t
left any out. Showing this is beyond the scope of this book. The im-
portant point is that, happily, the proof system for TFL is both sound
and complete. This is not the case for all proof systems or all formal
languages. Because it is true of TFL, we can choose to give proofs or
give truth tables—whichever is easier for the task at hand.



17.2 Other Semantic and Proof Theoretic Notions

Now we know that the proof theoretic and truth-table methods are
equivalent, we can use them interchangable depending on which is
more useful.

We can also use proof theoretic methods for determining other log-
ical notions, such as being consistent. We summarise how one would
define them in 17.1

In fact, we can give general guidelines about when it’s best to give
proofs and when it is best to give truth tables. We do this in 17.2:

Practice exercises

A. Use either a derivation or a truth table for each of the following.

1.

S A

10.

11.

12.

Show that 4 — [((B A C) V D) — A] is a tautology.
Show that 4 — (4 — B) is not a tautology

Show that the sentence 4 — —4 is not a contradiction.
Show that the sentence 4 <> —4 is a contradiction.
Show that the sentence =(W — (/J Vv J)) is contingent

Show that the sentence -(X V(Y V Z)) V(X V (Y V Z)) is not
contingent

Show that the sentence B — -.§ is equivalent to the sentence
—|—|B — —|S

Show that the sentence —(X Vv 0) is not equivalent to the sentence
XAO

Show that the sentences =(4V B), C, C — A are jointly inconsis-
tent.

Show that the sentences —(4 V B), =B, B — A are jointly consis-
tent

Show that =(4 Vv (B V C)) ..=C is valid.
Show that =(4 A (B V C)) ..~C is invalid.

B. Use either a derivation or a truth table for each of the following.
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Logical

To prove it present

To prove it absent

property
Being a Derive i F}ind th; falls)tle hfne 11}1
tautology erive the sentence the truth table for the
sentence
. . . Find the t line i
Being a Derive the negation of mn ¢ true ihe m
> the truth table for the
contradiction the sentence
sentence
. Find E_]‘ falise line and a Prove the sentence or
Contingency true line in the truth . :
its negation
table for the sentence
Find a line in the
Eaui Derive each sentence truth tables for the
quivalence
from the other sentence where they
have different values
Find a line in truth Deri dicti
Consistency table for the sentence " erlveha contradiction
where they all are true | O™ the sentences
Find no line in the
. Derive the conclusion | truth table where the
Validity

from the premises

premises are true and
the conclusion false.

Table 17.2: When to provide a truth table and when to provide a proof.

1. Show that 4 — (B — A4) is a tautology

2. Show that ~(((N < Q) v Q) V N) is not a tautology

[ S B

~

. Show that Z vV (-Z < Z) is contingent

. show that (L < ((N — N) — L)) vV H is not contingent
. Show that (4 < A) A (B A =B) is a contradiction
. Show that (B < (C V B)) is not a contradiction.

. Show that ((-X & X) Vv X) is equivalent to X

8. Show that F' A (K A R) is not equivalent to (F < (K < R))



10.

11.

12.

Show that the sentences ~(W — W), (W & W)YAW, EV (W —
-(E A W)) are inconsistent.

Show that the sentences RV C, (CAR) — =R, (=(RVR) — R)
are consistent.

Show that =-—(C < =C),((GVC)VG) .. ((G — C)AG) is valid.
Show that =—=L,(C — =L) — C) .. =C is invalid.



CHAPTER 18

Proof-theoretic
concepts

Armed with our ‘+’ symbol, we can introduce some new terminology.

l X is a THEOREM iff + X ]

To illustrate this, suppose we want to prove that ‘~(4 A =4)’ is a
theorem. So we must start our proof without any assumptions. How-
ever, since we want to prove a sentence whose main logical operator is
a negation, we will want to immediately begin a subproof, with the ad-
ditional assumption ‘4 A —4’, and show that this leads to contradiction.
All told, then, the proof looks like this:

1 AN-A
2 Y AE 1
3 -4 AE 1
4 | ~(4AA-4) -11-3

We have therefore proved ‘~(4 A =4)’ on no (undischarged) assump-
tions. This particular theorem is an instance of what is sometimes called
the Law of Non-Contradiction.

To show that something is a theorem, you just have to find a suit-
able proof. It is typically much harder to show that something is not
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a theorem. To do this, you would have to demonstrate, not just that
certain proof strategies fail, but that no proof is possible. Even if you
fail in trying to prove a sentence in a thousand different ways, perhaps
the proof is just too long and complex for you to make out. Perhaps
you just didn’t try hard enough.

Here is another new bit of terminology:

Two sentences X and Y are PROVABLY EQUIVALENT iff each can
be proved from the other; i.e., both X + ¥ and Y + X.

As in the case of showing that a sentence is a theorem, it is relatively
easy to show that two sentences are provably equivalent: it just requires
a pair of proofs. Showing that sentences are not provably equivalent
would be much harder: it is just as hard as showing that a sentence is
not a theorem.

Here is a third, related, bit of terminology:

The sentences X7, Xs,...,X, are PROVABLY INCONSISTENT iff a
contradiction can be proved from them, i.e. X1,Xs,..., X, - Y A
—Y for some Y. If they are not INCONSISTENT, we call them
PROVABLY CONSISTENT.

It is easy to show that some sentences are provably inconsistent:
you just need to prove a contradiction from assuming all the sentences.
Showing that some sentences are not provably inconsistent is much
harder. It would require more than just providing a proof or two; it
would require showing that no proof of a certain kind is possible.

This table summarises whether one or two proofs suffice, or whether
we must reason about all possible proofs.

Yes No
theorem? one proof all possible proofs
inconsistent? one proof all possible proofs
equivalent? two proofs all possible proofs
consistent? all possible proofs one proof

Practice exercises

A. Show that each of the following sentences is a theorem:



1.0 -0
2. NV-N
3. J < [JV(LA-L)]
4. (A—>B)—>A4A)— 4

B. Provide proofs to show each of the following:

1. C>(EANG),-C—>G+G

2. MA(=N - -M)r (N AM)V-M

3. (ZAK)o YAM),DAN(D—->M)+rY > Z
4. WVX) VY VDX >SY, - ZrWVY

C. Show that each of the following pairs of sentences are provably equiv-
alent:

R E E—R

G, ~——-G
T—>S,—|S—>—|T
U—1,-(UA=I)
-(C - D),C A-D
-G & H, (G & H)

S b

D. If you know that X + Y, what can you say about (X A Z) + Y? What
about (X Vv Z) + Y? Explain your answers.

E. In this chapter, we claimed that it is just as hard to show that two
sentences are not provably equivalent, as it is to show that a sentence
is not a theorem. Why did we claim this? (Hint: think of a sentence
that would be a theorem iff X and Y were provably equivalent.)



PART V

First-order

logic

157



CHAPTER 19

Building
blocks of FOL

We have been studying arguments, and in particular their validity. In
Part we gave a strategy for checking the validity of an argument by
using TFL. That was:

1. Find the structure of the argument.
Identify the premises and conclusion.

2. Symbolise the argument in TFL.
3. Check if the TFL argument is valid.

> Using truth tables to look for a valuation providing a
counter example. If there is no such valuation, then
it is valid.

> Or, use natural deduction to show that it is valid.

However, this allows you to conclude that the original English lan-
guage argument is valid provided, if its best TFL-symbolization is. But
what if the best TFL symbolisation is invalid? Consider the following
arguments:

1. 1. Alice is a logician.
2. All logicians wear funny hats.
". Therefore: Alice wears a funny hat.
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2. 1. Everyone who loves Manchester United hates Manchester
City.
2. Manchester City is not hated by everyone.
.. Therefore: there is at least one person who doesn’t love
Manchester United.

We can symbolise these in TFL (follow the strategy as in 79). Since
we cannot paraphrase any of these sentences with ‘and’, ‘if’, ‘or’ or
‘not’, we simply have to use atomic sentences. We thus offer the sym-
bolisation:

LA H

with the symbolisation

L: Alice is a logician.
A4: All logicians wear funny hats.
H: Alice wears a funny hat.

And for the second argument we would symbolise this as:
P,-0 . R
using

P: Everyone who loves Manchester United hates Manchester
City.

Q: Manchester City is hated by everyone.

R: There is at least one person who doesn’t love Manchester
United.

Both of these TFL arguments are invalid. But the original English
arguments seem valid. Indeed, they seem valid independently of their
subject matter, that is, independently of whether they are talking about
Alice, logicians, funny hats or loving Manchester United. They seem
to be valid in virtue of the argument form. And it is not that we have
made a mistake while symbolizing the argument. The problem lies
with TFL itself. The expressive power of TFL is not rich enough to
explain why these English arguments are valid. TFL can recognise
arguments that are valid because of their truth-functional structure,
but these arguments are valid in virtue of something else. In particular,
their validity seems to hinge on our understanding of ‘all’, ‘everyone’,
and ‘there is’.

We will introduce a new logical language that will allow us to capture
the validity of these arguments. We will call this language first-order logic,
or FOL. The details of FOL will be explained throughout this chapter.



19.1 Names and Predicates

Consider
Alice is a logician.

In TFL we used an atomic sentence to represent this. In FOL we will
break it into two components: a name and a predicate.

Name Predicate
R ——

Alice is a logician.

A name picks out an individual. The name ‘Alice’ is picking out
some particular person, Alice.

A predicate expresses a property, in this case the property of being
a logician. The predicate is:

is a logician

In First Order Logic, FOL, we can symbolise these different com-
ponents. We will use lower-case letters like a,b,¢ . .. for names (except
x,y,z which are used for variables as we will later see), and upper case
letters like 4, B, C,. .. for predicates (except X,Y,Z, which are used for
metavariables). We can also add numbered subscripts if needed, for
example using dy7 as a name, or Hzgs as a predicate.

Like in TFL, when symbolising we have to give a symbolisation key
to specify how to interpret the predicates and names. In this case, we
might give:

a: Alice
Lx: x is a logician
and we can then symbolise ‘Alice is a logician’ as

La.

(We will say more about the “x” subscript later.)

Note that in FOL the name follows the predicate: we have to write
it as La. The property of being a logician applies to Alice.

As in TFL our choice of which letter to use for our name or predicate
doesn’t matter. It would be equally good to give

a: Alice
Px: x is a logician



And then symbolise ‘Alice is a logician’ as
Pa.

Let’s see some other example sentences which have this same form.
Each of these sentences could similarly be symbolised as Pa, though
the symbolisation key would have to change in each of these instances.

1. Rocky is strong
2. Joe Biden is a Democrat
3. Michael Palin is a member of Monty Python

In each of these cases the relevant symbolisation key would then be:

1 a: Rocky
Px: x is strong
2 a: Joe Biden
Px: » is a Democrat
3 a: Michael Palin
Px: x 1s a member of Monty Python

Names don’t have to name people, for example we can also symbolise
4. The Tower of London is in England.
as Pa using the symbolisation key:

a: The Tower of London
Px: x is in England

What is important, though, is that what we are symbolising as a name
in FOL refers to a specific person, place, or thing.
Consider

5. Buses are red.

You might think that this has the same form and symbolise it as La with
the symbolisation key:

a: Buses
Lx: « 1s red

But this would be wrong. Do not do this. The reason is that ‘Buses’
does not refer to a specific thing, it refers to a great many objects.



19.2 Names, predicates and connectives

In FOL we will also make use of all of the tools from TFL. We can
symbolise

6. Joe is happy and Katie is sad

Joe is happy and Katie is sad
Joe is happy and Katie is sad
HjnSk

/N

Joe is happy  Katie is sad

Hj Sk
as
HjASk
with the symbolisation key:
Hx: x is happy
Sx: « 1s sad
j: Joe
k: Katie

To symbolise
7. Joe and Katie are happy

we observe that it can be naturally paraphrased as Joe is happy and
Katie is happy’ and thus symbolised as

HjnHE
To symbolise
8. If Joe is happy, then Katie is too

we observe that it can be naturally paraphrased as ‘If Joe is happy then
Katie is happy’ and thus symbolised as

Hj— Hk
We can also symbolise more complex sentences, for example:

9. If Joe is not happy then Katie or Billy is sad.



If Joe is not happy then Katie or Billy is sad
If Joe is not happy then Katie or Billy is sad.
-Hj— (SkvSh)

e N\

Joe is not happy Katie or Billy is sad
It is not the case that Joe is happy  Katie is sad or Billy is sad
-~Hj SkvSbh
Joe is happy Katie is sad  Billy is sad
H] Sk Sb

One final example. To symbolise:
10. Herbie is a red car

we might simply offer
Ah

using

Ax: x is a red car

h: Herbie

But it is more informative to observe that we can naturally paraphrase
it as ‘Herbie is red and Herbie is a car’ so symbolise it as

RhACh
using
Rx: « is red
Cx: x is a car
h: Herbie

Since this latter symbolisation extracts more of the information from
the original sentence, it is generally going to be better.

19.3 Many-placed predicates

All of the predicates that we have considered so far concern properties
that objects might have. Those predicates have one gap in them, and



to make a sentence, we simply need to slot in one term. They are
ONE-PLACE predicates.

However, other predicates concern the relation between two things.
Here are some examples of relational predicates in English:

loves
is to the left of
is in debt to

These are TWO-PLACE predicates. They need to be filled in with two
terms in order to make a sentence. They express a relationship between
two objects.

Now there is a little foible with the above. We have used the same
symbol, ’, to indicate a gap formed by deleting a term from a
sentence. However (as Frege emphasized), these are different gaps. To
obtain a sentence, we can fill them in with the same term, but we can
equally fill them in with different terms, and in various different orders.
The following are all perfectly good sentences, and they all mean very
different things:

Karl loves Karl
Karl loves Imre
Imre loves Karl
Imre loves Imre

The point is that we need to keep track of the gaps in predicates, so
that we can keep track of how we are filling them in.

To keep track of the gaps, we will label them. The labelling conven-
tions we will adopt are best explained by example. Suppose we want
to symbolize the following sentences:

11. Karl loves Imre.

12. Imre loves himself.

13. Karl loves Imre, but not vice versa.
14. Karl is loved by Imre.

We will start with the following symbolisation key:

domain: people
i: Imre
k: Karl
Lxy: x loves »



Sentence 11 will now be symbolized by Lki.

Sentence 12 can be paraphrased as ‘Imre loves Imre’. It can now
be symbolized by Lii.

Sentence 13 is a conjunction. We might paraphrase it as ‘Karl loves
Imre, and Imre does not love Karl’. It can now be symbolized by Lki A
-Lik.

Sentence 14 might be paraphrased by ‘Imre loves Karl’. It can then
be symbolized by Lik. Of course, this slurs over the difference in tone
between the active and passive voice; such nuances are lost in FOL.

This last example, though, highlights something important. Sup-
pose we add to our symbolization key the following:

Mxy: y loves x

Here, we have used the same English word (‘loves’) as we used in our
symbolization key for Lxy. However, we have swapped the order of
the gaps around (just look closely at those little subscripts!) So Mki
and Lik now both symbolize ‘Imre loves Karl’. Mik and Lki now both
symbolize ‘Karl loves Imre’. Since love can be unrequited, these are
very different claims.

The moral is simple. When we are dealing with predicates with
more than one place, we need to pay careful attention to the order of
the places.

Predicates can have more than two places.

For example, consider

15. David bought the necklace for Victoria.

We symbolise this as

Bdna
using the symbolisation key:
d: David
n: the necklace
a: Victoria
Rxyz: x bought y for 2

There is no limit to the number of places that a predicate may have.

16. The daughter of Gregor and Hilary is a friend of the first daughter
of Bill and Michelle.



We symbolise this as

Rabcd
using:
a: Gregor
b: Hilary
¢: Bill
d: Michelle
Rix1x9x3x4: The daughter of x and xo 15 a friend of the first
daughter of x; and X

19.4 Universal Quantifier

Consider
17. Everyone wears a funny hat

This doesn’t say of any specific individual that they wear a funny hat,
but it says everyone does so. To express this, we introduce the V symbol.
This is called the universal quantifier.

V should be read as “everything” or “everyone” (although it is some-
times more convenient to merely read “every” or “all”) . If we say that
everyone wears a funny what do we want to say of all people? We want
to say that they wear a funny hat. In this sentence we used the “they”.
This doesn’t refer to any particular person, Harry or Katie, instead it
can refer to anyone. That is, we are using it as an INDIVIDUAL VARI-
ABLE. We might then paraphrase “Everyone wears a funny hat” more
explicitly as:

For everyone, x: x wears a funny hat.

Here we have made explicit the variable as x. In FOL we can also
use y,z, or also, for example, x39 as variables. Quantifiers always have
to be followed immediately by a variable.

If we wanted to symbolise “Alice wears a funny hat” we would use
Fa. To symbolise “Everyone wears a funny hat”, we paraphrase it as
“For everyone : x wears a funny hat.” and then symbolise it as VxFx.

Whatever we wanted to say of an individual we can now say of
everyone using this quantifier. Consider

18. Everyone is happy and wears a funny hat

We can break this up:



Everyone is happy and wears a funny hat
For everyone, x: x is happy and x wears a funny hat
Vx (Hx N Fx)

x is happy and x wears a funny hat
HxNFx
x is happy  x wears a funny hat
Hx Fx

So we can symbolise it as
Vx(Hx A Fx)

We have here been using Vx to be read out-loud as “everyone”. But
when we usually say “everyone” (“everything”) do we always mean to
talk about every person (every thing)? No! Suppose I say

Everyone has done the problem sheet.

then I do not mean to say that every person in the world has done
the problem sheet. Arguably, I rather want to say that every student
of the logic course has done the problem sheet. This suggests that
how a quantifier is to be understood depends on the pomMAIN. The
domain is the collection of things that we are talking about. Ultimately,
using the notion of a domain the quantifier Vx should be understood as
“for all objects in the domain, x”. If the domain also contains dogs, or
landmarks, then it also says something about those dogs, or landmarks.
We say that the quantifiers range over the objects in the domain.
If I give

Ex: x is energetic
domain: dogs

Then VxEx says that all dogs are energetic. More generally, in this case
we read Vx as “For every dog, x: ...".

If I have a domain consisting of landmarks, then Vx is read as “For
every landmark, x: ...".

It should be immediate why it is important to highlight the domain
when symbolizing arguments in FOL. The choice of the domain high-
lights the implicit assumptions we make when considering the sentence

in the given situation. Depending on these implicit assumptions, i.e.,



the choice of the domain, a sentence like ‘Everyone has done the prob-
lem sheet.” may come out true or false.

The domain can be chosen however you like. However, in FOL
domains have to contain at least one object.

19.5 Existential Quantifier

The Universal Quantifier, V, allows us to capture English notions like
“everything”. The final component of FOL is the Existential Quantifier,
3. This allows us to capture “someone” or“something”.

To symbolise

19. Someone is angry.
with the symbolisation key

domain: people
Ax: x is angry

We can paraphrase it as

There is someone, x, such that: x is angry.

Someone is angry.
There is someone, x, such that: x is angry.
Jx Ax

X is angry
Ax

To symbolise

20. There is a logician who wears glasses



There is a logician who wears glasses
There is someone, x: x is a logician who wears glasses
dx (Lx A Gx)

x is a logician who wears glasses
x is a logician and x wears glasses
LxANGx
x is a logician  x wears glasses
Lx Gx

giving our symbolisation key:

domain: people
Lx: x is a logician
Gx: x wears glasses

To symbolise

21. There is a Polish woman who won the Nobel Prize

There is a Polish woman who won the Nobel Prize
There is someone, x: x is a Polish woman who won the Nobel Prize
x ((Px A Wx) A Nx)

x is a Polish woman who won the Nobel Prize
x is a Polish woman and x won the Nobel Prize
(Px AWx)ANx

x is a Polish woman \\

x is Polish and x is a woman x won the Nobel Prize
PxA\Wx Nx

/N

x is Polish  x is a woman
Px Wx

So we symbolise it as:
Ax((Px A Wx) A Nx)

giving our symbolisation key:



domain: people

Px: x is polish
Wx: » is a woman
Nux: » won the Nobel Prize

As for the universal quantifier, how to read “3x” depends on the
domain. We might talk not about people but about dogs. If our do-
main is dogs, then we understand 3x as “There is a dog, x, such that:“.
However, a more neutral way of understanding the existential quan-
tifier, which anticipates the semantics for FOL is as “ there exists an
object of the domain ,”, which also makes it obvious why 3 is called
the existential quantifier.



CHAPTER 20

Sentences of

We have now informally introduced the basic building blocks of sen-
tences of FOL. We will now carefully introduce what it is to be a sen-
tence of FOL.

20.1  Vocabulary of FOL

We’ll start by summarising, a bit more formally, the vocabulary of FOL:

Predicates 4,B.C,... . W, with subscripts, as needed:
Al,Zz,A25,j375,. A

Names a,b,c,...,s,t, or with subscripts, as needed a1, boo4, 7, m3,. . .

Variables x,y,z, or with subscripts, as needed x1,y1,21,%9,.... #,0,w
may also be used.

'Each predicate will have a number of places associated with it. We should thus
really introduce:
Zero-Place Predicates = Atomic sentences of TFL A4° B, ... ,ZO, with subscripts,
as needed: A?,ZS,A&;,]BO%,. ..

One-Place Predicates A!,B!,...,Z1 with subscripts, as needed: AI,Z%,A%5,[%75,. ..
: 2 p2 2 i - A2 72 42 72
Two-Place Predicates A4°,B“,...,Z*, with subscripts, as needed: Al,ZQ,A25,]375,. ..

Three-Place Predicates 4%, B%,...,Z%, with subscripts, as needed: AB,ZS,Ags,j;

750

etc. We drop the superscripts for ease.
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Connectives —,A,V,—
Brackets (, )
Quantifiers V,3

20.2 Formulas

In §4.3, we went straight from the presentation of the vocabulary of TFL
to the definition of a sentence of TFL. In FOL, we will have to go via
an intermediary stage, that is, we first need to introduce FORMULAS of
FOL. The intuitive idea is that a formula is any sentence, or anything
which can be turned into a sentence by adding quantifiers out front.
But this will take some unpacking.

As we did for TFL, we will present a inductive definition of a formula
of FOL. The starting point of this is the notion of an atomic formula. In
TFL we started our definition with the notion of an atomic sentence,
which were just given to us in our vocabulary. In FOL, the starting point
of our definition is the notion of an atomic formula. Atomic formulas
will be given by the following definition:

If P is an n-place predicate and {q,. .., are either variables or
names, then P¢; ..., is an ATOMIC FORMULA.”

For example, if D is a one-place predicate (we might have introduced
it to symbolise x is a dog’), and L is a two-place predicate (we
might have introduced it to symbolise ° » loves ,’), then the
following are atomic formulas:

Db, Dx, Dy, Lki, Lkx, Lyz.

Formulas are constructed by starting with these and using either
our TFL connectives or our quantifiers.

We now give the inductive definition of what it is to be a formula of
FOL.

°In FOL variables and names are both called (singular) terms. Notice that in the
above definition P and ¢ are metavariables ranging over names of predicates and names
of terms respectively.



1. If P is an n-place predicate and #,...¢, are either vari-
ables or names, then P# ...¢, is a formula.
These are called ATOMIC FORMULAS.

2. If X is a formula, then =X is a formula.
3. If X and Y are formulas, then

a) (X AY) is a formula,
b) (X VY) is a formula,

¢) (X > 7Y)is aformula, and
4. If X is a formula, v is a variable , then

a) YvX is a formula
b) FvX is a formula.

5. Nothing else is a formula.

As for TFL, we start out with some formulas, such as Dx or Db,
and we can construct more complicated formulas with our connectives,

e.g.

(Dx A Db),
—(Dx A Db)
(—~(Dx ADb) — Lxy)

And we can display their construction using our formation trees, as in
4.3.
(—=(Dx A Db) — Lxy)

/N

-(Dx ADb) Lxy

(Dx A Db)
/ \
Dx Db

This is exactly as in the case of TFL, the only difference is that the
“leaves” of the tree have more structure to them: they’re predicates



applied to names or variables rather than simply the single atomic sen-
tences that we had in TFL.

The new clauses here are in 4. This lets us put Vx in front of a for-
mula, e.g. Bx to construct a formula VxBx. We can also add quantifiers
when the formula was already more complicated, e.g., we can construct

a formula
Vx(=(Dx A Db) — Lxy).

We could also have added an existential quantifier, 3 to construct
Ax(=~(Dx A Db) — Lxy).

We can also do it with other variables, e.g.
Vy(=(Dx A Db) — Lxy).

We can then add further quantifiers to these new formula, to construct,

e.g.
JyVx(=(Dx A Db) — Lxy).

We can again display the structure and construction of the sentence
perspicuously by presenting a formation tree:

dyVx(=(Dx A Db) — Lxy)

Vx (=(Dx A Db) — Lxy)

(—~(Dx A Db) — Lxy)

/N

- (Dx ADb) Lxy

(Dx A Db)
/ \
Dx Db

One more example:



Jz2Vy(Ryz A IxQx)

Vy (Ryz A 3xQx)

(Ryz A3xQx)

/N
Ryz  3JxQx
|
Ox

Moving up the formation tree is following one of the rules of the recur-
sive specification of what it is to be a sentence.

The notions of scope and main logical operators that were given in
4.3 equally applies to FOL but now the main logical operator might be
a quantifier. These were:

The MAIN LOGICAL OPERATOR in a sentence is the operator that
was introduced last when that sentence was constructed using
the recursion rules.

The scork of a logical operator in a sentence is the formula for
which that operator is the main logical operator.

We can graphically illustrate scopes as follows:

scope of 3z

scope of Jx
—_—

JzVy( 3xQx ARyz)

scope of Vy

20.3 Sentences

Recall that we are largely concerned in logic with assertoric sentences:
sentences that can be either true or false. Many formulas are not sen-
tences. Consider the following symbolization key:

domain: people



Lxy: x loves »
b: Boris

Consider the atomic formula Lzz. Can it be true or false? You might
think that it will be true just in case the person named by z loves them-
self, in the same way that Lbb is true just in case Boris (the person
named by b) loves himself. However, z is a variable, and does not name
anyone or any thing.

Of course, if we put an existential quantifier out front, obtaining
JzLzz, then this would be true iff someone loves herself. Equally, if we
wrote YzLzz, this would be true iff everyone loves themself. The point
is that we need a quantifier to tell us how to deal with a variable.

Let’s make this idea precise.

A BOUND VARIABLE is an occurrence of the variable » that is
within the scope of either Vv or Ju.

A FREE VARIABLE is any variable that is not bound.

For example, consider the formula
Vx(Ex vV Dy) — 3z(Ex — Lzx)

The scope of the universal quantifier Vx is Vx(Ex V Dy), so the first x
is bound by the universal quantifier. However, the second and third oc-
currence of x are free. Equally, the y is free. The scope of the existential
quantifier 3z is (Ex — Lzx), so z is bound.

Finally we can say what a sentence of FOL is

A SENTENCE of FOL is any formula of FOL that contains no free
variables.

20.4 Bracketing conventions
We will adopt the same notational conventions governing brackets that

we did for TFL (see §4.3): we may omit the outermost brackets of a
formula.

Practice exercises

A. Identify which variables are bound and which are free.



Al ol o S

dxLxy AVyLyx

VxAx A Bx

Vx(Ax A Bx) AVy(Cx A Dy)
Vx3y[Rxy — (Jz A Kx)] V Ryx
Vxq1 (MxQ g Lxgxl) A Tx9Lx3x9



CHAPTER 21

FOL-
Symbolisations

We have already seem the key idea of FOL symbolisation in Chapter 19
applied to sentences with limited logical complexity. Before moving to
symbolise more complex sentences, we explicitly summarise our strat-
egy for symbolising complex sentences. This extends the strategy that
we used for TFL in §8.2:

1. See if the sentence can be paraphrased in English in one
of the standard forms.

> If not, it’s an atomic formula: identify the predicate
and the variables or names.

2. Use the symbolisation trick for that form.

3. Repeat the procedure with the components. Etc.

Our key forms are:
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English paraphrase Symbolisation
Everything (in the domain), x, is such that: Vx...
Something (in the domain), x, is such that: 3x...

It is not the case that X -X
Xand Y (XAY)
XorY (XVvY)
If X, then Y (X —->7Y)

Also remember that there were various further tricks from II, such
as ‘X onlyif Y’ as (X — Y) and ‘Unless X, Y’ as (X VY). These still
apply in the FOL setting. We will also see some more such tricks later.

21.1 Clarification on Domains

In FOL, the domain must always include at least one thing. Moreover,
in English we can infer ‘something is angry’ from ‘Gregor is angry’. In
FOL, then, we will want to be able to infer xAx from Ag. So we will
insist that each name must pick out exactly one thing in the domain.

A domain must have at least one member. A name must pick
out exactly one member of the domain, but a member of the
domain may be picked out by one name, many names, or none
at all.

Non-referring terms (Further philosophical interest)

In FOL, each name must pick out exactly one member of the domain.
A name cannot refer to more than one thing—it is a singular term.
Each name must still pick out something. This is connected to a classic
philosophical problem: the so-called problem of non-referring terms.

Medieval philosophers typically used sentences about the chimera
to exemplify this problem. Chimera is a mythological creature; it does
not really exist. Consider these two sentences:

1. Chimera is angry.
2. Chimera is not angry.

It is tempting just to define a name to mean ‘chimera.” The symboliza-
tion key would look like this:



domain: creatures on Earth
Ax: x is angry.
¢: chimera

We could then symbolize sentence 1 as A¢ and sentence 2 as —Ac.

Problems will arise when we ask whether these sentences are true
or false.

One option is to say that sentence 1 is not true, because there is
no chimera. If sentence 1 is false because it talks about a non-existent
thing, then sentence 2 is false for the same reason. Yet this would mean
that Ac and —A4c¢ would both be false. Given the truth conditions for
negation, this cannot be the case, and contradict the Law of Excluded
Middle.

Since we cannot say that they are both false, what should we do?
Another option is to say that sentence 1 is meaningless because it talks
about a non-existent thing. So 4¢ would be a meaningful expression in
FOL for some interpretations but not for others. Yet this would make
our formal language hostage to particular interpretations. Since we are
interested in logical form, we want to consider the logical force of a
sentence like A¢ apart from any particular interpretation. If A¢ were
sometimes meaningful and sometimes meaningless, we could not do
that.

This is the problem of non-referring terms which is important problem
in philosophical logic and the philosophy of language. For our purpose
the important point is to appreciate that each name of FOL must re-
fer to something in the domain (although the domain can contain any
things we like). If we want to symbolize arguments about mythologi-
cal creatures, then we must define a domain that includes them. This
option is important if we want to consider the logic of stories. We can
symbolize a sentence like ‘Sherlock Holmes lived at 221B Baker Street’
by including fictional characters like Sherlock Holmes in our domain.

21.2 Symbolisation with Many-Placed Predicates
To symbolise

3. Everyone loves Alice.

We want to paraphrase it in one of our standard forms, which we do
as:



Everyone loves Alice
For everyone, x: x loves Alice
Vx Lxa

x loves Alice
Lxa

So we give the symbolisation
VxLxa
with the symbolisation key:

domain: people
Lxy: x loves ¥
a: Alice

If we instead want to symbolise
4. Alice loves everyone.

We paraphrase this as:

Alice loves everyone
For everyone, x: Alice loves x
Vx Lax
Alice loves x
Lax

So we give the symbolisation
VxLax

To symbolise

5. Someone loves themselves.

Someone loves themselves.
For someone, x: x loves themselves
dx Lxx
|
x loves themselves
x loves x
Lxx



If we want to symbolise
6. Some dog likes playing with Finley.
we should paraphrase this as:
Some dog likes playing with Finley

There is some thing x: x is a dog who likes playing with Finley
Jx (Dx A Pxf)

x is a dog who likes playing with Finley
x is a dog and «x likes playing with Finley
Dx ANPxf

/ N

x is a dog  «x likes playing with Finley
Dx Pxf

21.3 Quantifiers inside a sentence

All the sentences we’ve considered so far have the quantifiers at the
beginning of the sentence. But we can also use truth functional connec-
tives to combine sentences of FOL.

7. Finley is not quiet, but some dog is.

We work as follows:



Finley is not quiet, but some dog is
Finley is not quiet and some dog is quiet

(=Qf A3x(Dx A Qx))
Finley is not quiet Some dog is quiet
It is not the case that Finley is quiet =~ There is some x: x is a dog and x is quiet
-0f Jx (Dx A Qx)
Finley is quiet x is a dog and x is quiet
Qf Dx A Qx

/N

xisadog x is quiet
Dx Ox

So we symbolise this sentence as
(~Qf A 3x(Dx A Qx))
giving the symbolisation key

domain: animals

Dx: x is a dog
Ox: x is quiet
f: Finley

Note, that as per 21.1, this symbolisation is only legitimate assuming
that Finley names an animal. Names have to name members of the
domain.

Consider also

8. Some dog is quiet but Finley is not



Some dog is quiet but Finley is not
Some dog is quiet and Finley is not quiet

(Fx(Dx A Qx) A=Qf)
Some dog is quiet \
There is some x: x is a dog and x is quiet Finley is not quiet
Jx (Dx A Qx) It is not the case that Finley is quiet -
x is a dog and x is quiet Finley is quiet
DxNQx Qf

/N

xisadog x is quiet
Dx Ox

Consider:
9. Not every dog is quiet
We work as follows:

Not every dog is quiet
It is not the case that every dog is quiet
- Vx(Dx — Qx)

Every dog is quiet
For all x: if x is a dog then x is quiet
Vx (Dx — Qx)

If xis a dog then x is quiet
Dx— Qx

/N

xisadog x is quiet
Dx Ox

So we symbolise this sentence as

=Vx(Dx — Qx)



CHAPTER 22

Common

Quantifier

Phrases and
Domains

22.1 Common quantifier phrases

Consider these sentences:

1. Every coin in my pocket is a quarter.

2. Some coin on the table is a dime.

3. Not all the coins on the table are dimes.
4. None of the coins in my pocket are dimes.

In providing a symbolization key, we need to specify a domain. Since
we are talking about coins in my pocket and on the table, the domain
must at least contain all of those coins. Since we are not talking about
anything besides coins, we let the domain be all coins. Since we are
not talking about any specific coins, we do not need to deal with any
names. So here is our key:

domain: all coins
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Px: x is in my pocket

Tx: « 1s on the table
Qx: x is a quarter
Dx: x is a dime

Sentence 1 is most naturally symbolized using a universal quantifier.
The universal quantifier says something about everything in the do-
main, not just about the coins in my pocket. Sentence 1 can be para-
phrased as ‘for any coin, if that coin is in my pocket then it is a quarter’.
So we can symbolize it as Vx(Px — 0x).

Since sentence 1 is about coins that are both in my pocket and that
are quarters, it might be tempting to symbolize it using a conjunction.
However, the sentence Vx(Px A Qx) would symbolize the sentence ‘ev-
ery coin is both a quarter and in my pocket’. This obviously means
something very different than sentence 1. And so we see:

If a sentence can be paraphrased in English as

‘every F is G,
‘all Fs are Gs’, or
‘any F is a G,

it can be symbolised as

Vx(Fx — Gx).

Sentence 2 is most naturally symbolized using an existential quan-
tifier. It can be paraphrased as ‘there is some coin which is both on the
table and which is a dime’. So we can symbolize it as Ix(T'x A Dx).

Notice that we needed to use a conditional with the universal quan-
tifier, but we used a conjunction with the existential quantifier. Suppose
we had instead written 3x(7x — Dx). That would mean that there is
some object in the domain of which (7x — Dx) is true. Recall that, in
TFL, X — Y is logically equivalent (in TFL) to =X Vv Y. This equiva-
lence will also hold in FOL. So 3x(7Tx — Dx) is true if there is some
object in the domain, such that (-7'x V Dx) is true of that object. That
is, 3x(Tx — Dx) is true if some coin is ¢ither not on the table or is
a dime. Of course there is a coin that is not on the table: there are
coins lots of other places. So it is very easy for Ix(I'x — Dx) to be
true. A conditional will usually be the natural connective to use with a
universal quantifier, but a conditional within the scope of an existential
quantifier tends to say something very weak indeed. As a general rule



of thumb, do not put conditionals in the scope of existential quantifiers
unless you are sure that you need one.

If a sentence can be paraphrased in English as

‘some F is G,

‘there is some F that is G’,

‘An F is G’, or

‘there is at least one F that is a G’

it can be symbolised as

Ax(Fx A Gx).

Sentence 3 can be paraphrased as, ‘It is not the case that every coin
on the table is a dime’. So we can symbolize it by =Vx(7'x — Dx). You
might look at sentence 3 and paraphrase it instead as, ‘Some coin on
the table is not a dime’. You would then symbolize it by 3x(7'x A =Dx).
Although it is probably not immediately obvious yet, these two sen-
tences are logically equivalent. (This is due to the logical equivalence
between -VxX and 3x—X, mentioned in §19, along with the equiva-
lence between =(X — Y) and X A =Y.)

If a sentence can be paraphrased in English as
‘not all Fs are Gs’,
it can be symbolised as

-VYx(Fx — Gx), or
Ax(Fx A =Gx).

Sentence 4 can be paraphrased as, ‘It is not the case that there is
some dime in my pocket’. This can be symbolized by —=3x(Px A Dx).
It might also be paraphrased as, ‘Everything in my pocket is a non-
dime’, and then could be symbolized by Vx(Px — —Dx). Again the two
symbolizations are logically equivalent; both are correct symbolizations
of sentence 4.



If a sentence can be paraphrased in English as
‘no Fs are Gs’,
it can be symbolised as

—=3x(Fx A Gx), or
Vx(Fx — =Gx).

Finally, consider ‘only’, as in:
5. Only dimes are on the table.

How should we symbolize this? A good strategy is to consider when
the sentence would be false. If we are saying that only dimes are on
the table, we are excluding all the cases where something on the ta-
ble is a non-dime. So we can symbolize the sentence the same way we
would symbolize ‘No non-dimes are on the table.” Remembering the
lesson we just learned, and symbolizing ‘x is a non-dime’ as ‘-~Dx’,
the possible symbolizations are: ‘-3x(7'x A —Dx)’, or alternatively:
Vx(Tx — —--Dx)’. Since double negations cancel out, the second
is just as good as Vx(7Tx — Dx)’. In other words, ‘Only dimes are on
the table’ and ‘Everything on the table is a dime’ are symbolized the
same way.

If a sentence can be paraphrased in English as
‘only Fs are Gs’,
it can be symbolised as

=3x(Gx A =Fx), or
Vx(Gx — Fx)

22.2 Empty predicates

In §19, we emphasized that a name must pick out exactly one object
in the domain. However, a predicate need not apply to anything in the
domain. A predicate that applies to nothing in the domain is called an
EMPTY PREDICATE. This is worth exploring.

Suppose we want to symbolize these two sentences:



6. Every monkey knows sign language
7. Some monkey knows sign language

It is possible to write the symbolization key for these sentences in this
way:

domain: animals
Mx: x is a monkey.
Sx: x knows sign language.

Sentence 6 can now be symbolized by Vx(Mx — Sx). Sentence 7 can
be symbolized as Ix(Mx A Sx).

It is tempting to say that sentence 6 entails sentence 7. That is,
we might think that it is impossible for it to be the case that every
monkey knows sign language, without its also being the case that some
monkey knows sign language, but this would be a mistake. It is possible
for the sentence Vx(Mx — Sx) to be true even though the sentence
Ax(Mx A Sx) is false.

How can this be? The answer comes from considering whether
these sentences would be true or false if there were no monkeys. If there
were no monkeys at all (in the domain), then Vx(Mx — Sx) would
be vacuously true: take any monkey you like—it knows sign language!
But if there were no monkeys at all (in the domain), then Ix(Mx A Sx)
would be false.

Another example will help to bring this home. Suppose we extend
the above symbolization key, by adding:

Rx: x is a refrigerator

Now consider the sentence Vx(Rx — Mx). This symbolizes ‘every
refrigerator is a monkey’. This sentence is true, given our symbolization
key, which is counterintuitive, since we (presumably) do not want to say
that there are a whole bunch of refrigerator monkeys. It is important
to remember, though, that Vx(Rx — Mx) is true iff any member of the
domain that is a refrigerator is a monkey. Since the domain is animals,
there are no refrigerators in the domain. Again, then, the sentence is
vacuously true.

If you were actually dealing with the sentence ‘All refrigerators are
monkeys’, then you would most likely want to include kitchen appli-
ances in the domain. Then the predicate R would not be empty and
the sentence Yx(Rx — Mx) would be false.



When F is an empty predicate, a sentence Vx(Fx — ...) will
be vacuously true.

22.3 Picking a domain

The appropriate symbolization of an English language sentence in FOL
will depend on the symbolization key. Choosing a key can be difficult.
Suppose we want to symbolize the English sentence:

8. Every rose has a thorn.
We might offer this symbolization key:

Rx: « is a rose
Tx: « has a thorn

According to our symbolization guideline sentence 8 should then be
symbolized as Vx(Rx — T'x). However, it remains to specify a do-
main. Without specific contextual information we must assume that
the sentence makes a claim about all roses, that is, we should assume
that the domain contains all roses. Also, arguable by saying that all
roses have thorns we contrast roses to other tings in the domain: for
if every object in the domain were a rose, it would suffice to say ‘Ev-
erything has a thorne’. So in the case of sentence 8 taking the domain
to consist of flowers would be a good, plausible choice and picking the
domain to consist of roses only would not be satisfactory.

More generally, in absence of specific contextual information about
the domain, it is preferable to pick a domain that includes many things.
that is, things besides roses: rhododendrons; rats; rifles; whatevers.,
and we will certainly need to include a more expansive domain if we
simultaneously want to symbolize sentences like:

9. Every cowboy sings a sad, sad song.

Our domain must now include both all the roses (so that we can symbol-
ize sentence 8) and all the cowboys (so that we can symbolize sentence
9). So we might offer the following symbolization key:

domain: people and plants
Cx: x is a cowboy
Sx: x sings a sad, sad song
Rx: » is a rose



Tx: x has a thorn

Now we will have to symbolize sentence 8 with Vx(Rx — Tx), since
VxT x would symbolize the sentence ‘every person or plant has a thorn’.
Similarly, we will have to symbolize sentence g with Vx(Cx — Sx).

In general, the universal quantifier can be used to symbolize the
English expression ‘everyone’ if the domain only contains people. If
there are people and other things in the domain, then ‘everyone’ must
be treated as ‘every person’.

22.4 Ambiguous predicates

Suppose we just want to symbolize this sentence:
10. Adina is a skilled surgeon.

Let the domain be people, let Kx mean ‘x is a skilled surgeon’, and let
a mean Adina. Sentence 10 is simply Ka.
Suppose instead that we want to symbolize this argument:

The hospital will only hire a skilled surgeon. All surgeons
are greedy. Billy is a surgeon, but is not skilled. Therefore,
Billy is greedy, but the hospital will not hire him.

We need to distinguish being a skilled surgeon from merely being a sur-
geon. So we define this symbolization key:

domain: people
Gx: x is greedy.
Hx: The hospital will hire -
Rx: x 1S a surgeon.
Kx: x 1s skilled.
b: Billy

Now the argument can be symbolized in this way:

1. Vx[ﬁ(Rx AKx) — —|Hx]
2. Yx(Rx — Gx)

3. RbA-Kb

.. Therefore: Gb A —Hb

Next suppose that we want to symbolize this argument:



Carol is a skilled surgeon and a tennis player. Therefore,
Carol is a skilled tennis player.

If we start with the symbolization key we used for the previous argu-
ment, we could add a predicate (let 7x mean ‘x is a tennis player’) and
a name (let ¢ mean Carol). Then the argument becomes:

1. (ReAKe)ATe
.. Therefore: Tc A K¢

This symbolization is a disaster! It takes what in English is a terrible
argument and symbolizes it as a valid argument in FOL. The problem
is that there is a difference between being skilled as a surgeon and skilled
as a tennis player. Symbolizing this argument correctly requires two
separate predicates, one for each type of skill. If we let K1x mean ‘x is
skilled as a surgeon’ and Ksx mean ‘x is skilled as a tennis player,” then
we can symbolize the argument in this way:

1. (ReAKie)ANTc
.. Therefore: T¢c A Kyc

Like the English language argument it symbolizes, this is invalid.

The moral of these examples is that you need to be careful of sym-
bolizing predicates in an ambiguous way. Similar problems can arise
with predicates like good, bad, big, and small. Just as skilled surgeons
and skilled tennis players have different skills, big dogs, big mice, and
big problems are big in different ways.

Is it enough to have a predicate that means ‘x is a skilled surgeon’,
rather than two predicates ‘x is skilled’ and ‘x is a surgeon’? Sometimes.
As sentence 10 shows, sometimes we do not need to distinguish between
skilled surgeons and other surgeons.

Must we always distinguish between different ways of being skilled,
good, bad, or big? No. As the argument about Billy shows, sometimes
we only need to talk about one kind of skill. If you are symbolizing
an argument that is just about dogs, it is fine to define a predicate that
means ‘x is big.” If the domain includes dogs and mice, however, it is
probably best to make the predicate mean ‘x is big for a dog.’

Practice exercises

A. Here are the syllogistic figures identified by Aristotle and his suc-
cessors, along with their medieval names:



10.

11.

12.

13.

14.

15.

Barbara. All G are F. All H are G. So: All H are F

Celarent. No G are F. All H are G. So: No H are F

Ferio. No G are F. Some H is G. So: Some H is not F

Darii. All G are H. Some H is G. So: Some H is F.

Camestres. All F are G. No H are G. So: No H are F.

Cesare. No F are G. All H are G. So: No H are F.

Baroko. All F are G. Some H is not G. So: Some H is not F.

Festino. No F are G. Some H are G. So: Some H is not F.

Datisi. All G are F. Some G is H. So: Some H is F.

Disamis. Some G is F. All G are H. So: Some H is F.

Ferison. No G are F. Some G is H. So: Some H is not F.

Bokardo. Some G is not F. All G are H. So: Some H is not F.

Camenes. All F are G. No G are H So: No His F.

Dimaris. Some F is G. All G are H. So: Some H is F.

Fresison. No F are G. Some G is H. So: Some H is not F.

Symbolize each argument in FOL.

B. Using the following symbolization key:

domain: people

Kx: x knows the combination to the safe
Sx: x is a spy
Vix: x is a vegetarian

h: Hofthor

i: Ingmar



symbolize the following sentences in FOL:

1. Neither Hofthor nor Ingmar is a vegetarian.
2. No spy knows the combination to the safe.
3. No one knows the combination to the safe unless Ingmar does.

4. Hofthor is a spy, but no vegetarian is a spy.

C. Using this symbolization key:

domain: all animals

Ax: x is an alligator.
Mx: x is a monkey.
Rx: x is a reptile.
Zx: « lives at the zoo.
a: Amos
b: Bouncer
¢: Cleo

symbolize each of the following sentences in FOL:

1. Amos, Bouncer, and Cleo all live at the zoo.

2. Bouncer is a reptile, but not an alligator.

3. Some reptile lives at the zoo.

4. Every alligator is a reptile.

5. Any animal that lives at the zoo is either a monkey or an alligator.
6. There are reptiles which are not alligators.

7. If any animal is an reptile, then Amos is.

8. If any animal is an alligator, then it is a reptile.

D. For each argument, write a symbolization key and symbolize the
argument in FOL.



. Willard is a logician. All logicians wear funny hats. So Willard
wears a funny hat

. Nothing on my desk escapes my attention. There is a computer
on my desk. As such, there is a computer that does not escape
my attention.

. All my dreams are black and white. Old TV shows are in black
and white. Therefore, some of my dreams are old TV shows.

. Neither Holmes nor Watson has been to Australia. A person
could see a kangaroo only if they had been to Australia or to
a zoo. Although Watson has not seen a kangaroo, Holmes has.
Therefore, Holmes has been to a zoo.

. No one expects the Spanish Inquisition. No one knows the trou-
bles I've seen. Therefore, anyone who expects the Spanish Inqui-
sition knows the troubles I've seen.

. All babies are illogical. Nobody who is illogical can manage a
crocodile. Berthold is a baby. Therefore, Berthold is unable to
manage a crocodile.



Symbolisation:
Multiple

quantifiers

We see more power of FOL when quantifiers start stacking on top of
one another.
Consider

1. Someone loves everyone.

Before considering how to symbolise that, we start of by symbolising
the related sentence:

2. John loves everyone.
This can be symbolised as VxL jx, using the symbolisation key:

domain: all people
j: John
Lxy: x loves y

This gives us an insight into how to symbolise 1: it’s like 2 except it
might not be John who loves everyone, 1 just says that there is someone,
9, such that y loves everyone. We will thus symbolise it IyVxLyx.

In the earlier examples we always used x as our variables; but we
here had to use y because x is already taken. We don’t want to say
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JxVxLxx as it’s not clear how one should read this sentence as we need
to identify which variables come with which quantifiers.

23.1 The order of quantifiers

Consider the sentence ‘everyone loves someone’. This is potentially
ambiguous. It might mean either of the following:

3. For every person x, there is some person that x loves
4. There is some particular person whom every person loves

Sentence 3 can be symbolized by Vx3yLxy, and would be true of a
love-triangle. For example, suppose that our domain of discourse is
restricted to Imre, Juan and Karl. Suppose also that Karl loves Imre
but not Juan, that Imre loves Juan but not Karl, and that Juan loves
Karl but not Imre. Then sentence 3 is true.

Sentence 4 is symbolized by JyVxLxy. Sentence 4 is not true in the
situation just described. Again, suppose that our domain of discourse
is restricted to Imre, Juan and Karl. This requires that all of Juan, Imre
and Karl converge on (at least) one object of love.

The point of the example is to illustrate that the order of the quan-
tifiers matters a great deal. Indeed, to switch them around is called a
quantifier shift fallacy. Here is an example, which comes up in various
forms throughout the philosophical literature:

1. For every person, there is some truth they cannot know.  (V3)
.. Therefore: There is some truth that no person can know. (3V)

This argument form is obviously invalid. It’s just as bad as:*

1. Every dog has its day. (V3)
.. Therefore: There is a day for all the dogs. (av)

The moral is: take great care with the order of quantification.

23.2 Stepping-stones to symbolization

Once we have the possibility of multiple quantifiers, representation in
FOL can quickly start to become a bit tricky. When you are trying
to symbolize a complex sentence, we recommend laying down several

!Thanks to Rob Trueman for the example.



stepping stones. As usual, this idea is best illustrated by example. Con-
sider this representation key:

domain: people and dogs

Dx: x is a dog
Fxy: x is a friend of »
Oxy: x OWns ¥
g: Geraldo

Now let’s try to symbolize these sentences:

Geraldo is a dog owner.

Someone is a dog owner.

All of Geraldo’s friends are dog owners.

Every dog owner is a friend of a dog owner.

9. Every dog owner’s friend owns a dog of a friend.

® o:

Sentence 5 can be paraphrased as, “There is a dog that Geraldo owns’.
This can be symbolized by Ix(Dx A Ogx).

Sentence 6 can be paraphrased as, ‘“There is some y such that
y is a dog owner’. Dealing with part of this, we might write
Jy(y is a dog owner). Now the fragment we have left as ‘y is a dog
owner’ is much like sentence 5, except that it is not specifically about
Geraldo. So we can symbolize sentence 6 by:

Ay3x(Dx A Oyx)

We should pause to clarify something here. In working out how to
symbolize the last sentence, we wrote down 3y(y is a dog owner). To
be very clear: this is neither an FOL sentence nor an English sentence:
it uses bits of FOL (3, y) and bits of English (‘dog owner’). It is really is
Just a stepping-stone on the way to symbolizing the entire English sentence
with a FOL sentence. You should regard it as a bit of rough-working-
out, on a par with the doodles that you might absent-mindedly draw in
the margin of this book, whilst you are concentrating fiercely on some
problem.

Sentence 7 can be paraphrased as, ‘Everyone who is a friend of
Geraldo is a dog owner’. Using our stepping-stone tactic, we might
write

Vx|Fxg — x is a dog owner]|

Now the fragment that we have left to deal with, ‘x is a dog owner’, is
structurally just like sentence 5. However, it would be a mistake for us



simply to write
Vx [Fxg — Jx(Dx A Oxx)]

for we would here have a clash of variables. While the scope of the
universal quantifier, Vx, is the entire conditional, the variable x does
not occur free in the consequent of the conditional : it is bound by the
existential quantifier instead. This means that

Vx [Fxg — dx(Dx A Oxx)]

does not symbolize ‘Every friend of Gerald is a dog owner’ but rather
a rather something like:

> If everyone is a friend of Gerald, then there is a dog that owns
itself.

That’s clearly not what we wanted!

To make sure that we get the intended outcome we need to see to
it that the universal quantifier binds the owner position in the conse-
quent of the conditional. To continue our symbolization, then, we must
choose some different variable for our existential quantifier. What we
want is something like:

Vx [Fxg — Jz(Dz A Oxz)]

This adequately symbolizes sentence 7, as the variable x now occurs
free in the consequent of the conditional and can be bound by the
universal quatifier, which in turn guarantees that dog-owner must be
friends of Gerald.

Sentence 8 can be paraphrased as ‘For any x that is a dog owner,
there is a dog owner who x is a friend of’. Using our stepping-stone
tactic, this becomes

Vx|x is a dog owner — Jy(y is a dog owner A Fixy)]
Completing the symbolization, we end up with
Vx[3z(Dz A Oxz) — Fy(3z(Dz A Oyz) A Fxy)]

Note that we have used the same letter, z, in both the antecedent and
the consequent of the conditional, but that these are governed by two
different quantifiers. This is ok: there is no clash here, because it is



clear which quantifier that variable falls under. We might graphically
represent the scope of the quantifiers thus:

scope of ‘Vx’

scope of ‘3y’
scope of 1st ‘32 scope of end ‘32’
e N ——

Vx[Elz(Dz A Oxz) — Jy(Iz(Dz A Oyz) /\ny)]

This shows that no variable is being forced to serve two masters simul-
taneously.

Sentence g is the trickiest yet. First we paraphrase it as ‘For any x
that is a friend of a dog owner, x owns a dog which is also owned by a
friend of x’. Using our stepping-stone tactic, this becomes:

Vx[x is a friend of a dog owner —
x owns a dog which is owned by a friend of x]

Breaking this down a bit more:

Vx[3y(Fxy Ay is a dog owner) —
3y(Dy A Oxy Ay is owned by a friend of x)]

And a bit more:
Vx[fly(ny AJz2(Dz A 0yz)) — Ty(Dy A Oxy A Fz(Fzx A Ozy))]

And we are done!

23.3 Suppressed quantifiers

Logic can often help to get clear on the meanings of English claims,
especially where the quantifiers are left implicit or their order is am-
biguous or unclear. The clarity of expression and thinking afforded by
FOL can give you a significant advantage in argument, as can be seen
in the following takedown by British political philosopher Mary Astell
(1666—1731) of her contemporary, the theologian William Nicholls. In
Discourse IV: The Duty of Wives to their Husbands of his The Duty
of Inferiors towards their Superiors, in Five Practical Discourses (London
1701), Nicholls argued that women are naturally inferior to men. In



the preface to the 3rd edition of her treatise Some Reflections upon Mar-
riage, Occasion’d by the Duke and Duchess of Mazarine’s Case; which is also
considered, Astell responded as follows:

"Tis true, thro’ Want of Learning, and of that Superior
Genius which Men as Men lay claim to, she [Astell] was ig-
norant of the Natural Inferiority of our Sex, which our Mas-
ters lay down as a Self-Evident and Fundamental Truth. She
saw nothing in the Reason of Things, to make this either
a Principle or a Conclusion, but much to the contrary; it
being Sedition at least, if not Treason to assert it in this
Reign.

For if by the Natural Superiority of their Sex, they mean
that every Man is by Nature superior to every Woman, which
is the obvious meaning, and that which must be stuck to if
they would speak Sense, it woud be a Sin in any Woman
to have Dominion over any Man, and the greatest Queen
ought not to command but to obey her Footman, because
no Municipal Laws can supersede or change the Law of
Nature; so that if the Dominion of the Men be such, the
Salique Law,® as unjust as English Men have ever thought it,
ought to take place over all the Earth, and the most glorious
Reigns in the English, Danish, Castilian, and other Annals,
were wicked Violations of the Law of Nature!

If they mean that some Men are superior to some Women
this is no great Discovery; had they turnd the Tables they
might have seen that some Women are Superior to some Men.
Or had they been pleased to remember their Oaths of Al-
legiance and Supremacy, they might have known that One
Woman is superior to A/l the Men in these Nations, or else
they have sworn to very little purpose.3 And it must not be
supposd, that their Reason and Religion woud suffer them
to take Oaths, contrary to the Laws of Nature and Reason
of things.4

We can symbolize the different interpretations Astell offers of Nicholls’
claim that men are superior to women: He either meant that every man

®The Salique law was the common law of France which prohibited the crown be
passed on to female heirs.

3In 1706, England was ruled by Queen Anne.

4Mary Astell, Reflections upon Marriage, 1706 Preface, iii-iv, and Mary Astell, Political
Writings, ed. Patricia Springborg, Cambridge University Press, 1996, g-10.



is superior to every woman, i.e.,

Ve(Mx — Vy(Wy — Sxy))
or that some men are superior to some women,

x(Mx AJy(Wy A Sxyp)).
The latter is true, but so is

Ay(Wy A3x(Mx A Syx)).

(some women are superior to some men), so that would be “no great
discovery.” In fact, since the Queen is superior to all her subjects, it’s
even true that some woman is superior to every man, i.e.,

Ay(Wy AVx(Mx — Syx)).

But this is incompatible with the “obvious meaning” of Nicholls’ claim,
i.e., the first reading. So what Nicholls claims amounts to treason
against the Queen!

Practice exercises

A. Using this symbolization key:

domain: all animals

Ax: x is an alligator
Mx: x is a monkey
Rx: x is a reptile
Zx: « lives at the zoo
Lx,y: « loves P

a: Amos

b: Bouncer

¢: Cleo

symbolize each of the following sentences in FOL:

1. If Cleo loves Bouncer, then Bouncer is a monkey.

2. If both Bouncer and Cleo are alligators, then Amos loves them
both.



Cleo loves a reptile.
Bouncer loves all the monkeys that live at the zoo.

All the monkeys that Amos loves love him back.

. Every monkey that Cleo loves is also loved by Amos.

There is a monkey that loves Bouncer, but sadly Bouncer does
not reciprocate this love.

B. Using the following symbolization key:

domain: all animals

Dx: x is a dog
Sx: « likes samurai movies

Lx,y: x is larger than y

r: Rave
h: Shane
d: Daisy

symbolize the following sentences in FOL:

1.

Rave is a dog who likes samurai movies.

. Rave, Shane, and Daisy are all dogs.

Shane is larger than Rave, and Daisy is larger than Shane.
All dogs like samurai movies.

Only dogs like samurai movies.

. There is a dog that is larger than Shane.

If there is a dog larger than Daisy, then there is a dog larger than
Shane.

No animal that likes samurai movies is larger than Shane.

No dog is larger than Daisy.



10.

11.

12.

13.

14.

15.

16.

Any animal that dislikes samurai movies is larger than Rave.
There is an animal that is between Rave and Shane in size.
There is no dog that is between Rave and Shane in size.

No dog is larger than itself.

Every dog is larger than some dog.

There is an animal that is smaller than every dog.

If there is an animal that is larger than any dog, then that animal
does not like samurai movies.

C. Using the symbolization key given, translate each English-language
sentence into FOL.

domain: candies

Cx: « has chocolate in it.

Mx: x has marzipan in it.

Sx: x has sugar in it.
T x: Boris has tried -

Bx,y: x is better than 5

L XN o ® b

Boris has never tried any candy.

Marzipan is always made with sugar.

Some candy is sugarfree.

The very best candy is chocolate.

No candy is better than itself.

Boris has never tried sugarfree chocolate.

Boris has tried marzipan and chocolate, but never together.

Any candy with chocolate is better than any candy without it.
Any candy with chocolate and marzipan is better than any candy
that lacks both.

D. Using the following symbolization key:

domain: people and dishes at a potluck

Rux: x has run out.



Tx: x is on the table.

Fx: « 1s food.
Px: x is a person.
Lx,y: « likes )
e: Eli

f: Francesca
g: the guacamole

symbolize the following English sentences in FOL:
1. All the food is on the table.

2. If the guacamole has not run out, then it is on the table.
3. Everyone likes the guacamole.

4. If anyone likes the guacamole, then Eli does.

5. Francesca only likes the dishes that have run out.

6. Francesca likes no one, and no one likes Francesca.

7. Eli likes anyone who likes the guacamole.

8. Eli likes anyone who likes the people that he likes.

9. If there is a person on the table already, then all of the food must
have run out.

E. Using the following symbolization key:

domain: people

Dx: x dances ballet.
Fx: « is female.
Mx: « 1s male.
Cx,y: « is a child of e
Sx,y: x is a sibling of e
e: Elmer
j: Jane
p: Patrick

symbolize the following sentences in FOL:



1. All of Patrick’s children are ballet dancers.
2. Jane is Patrick’s daughter.
3. Patrick has a daughter.
4. Jane is an only child.
5. All of Patrick’s sons dance ballet.
6. Patrick has no sons.
7. Jane is Elmer’s niece.
8. Patrick is Elmer’s brother.
9. Patrick’s brothers have no children.
10. Jane is an aunt.
11. Everyone who dances ballet has a brother who also dances ballet.

12. Every woman who dances ballet is the child of someone who
dances ballet.



Ambiguity

In chapter 10 we discussed the fact that sentences of English can be
ambiguous, and pointed out that sentences of TFL are not. One impor-
tant application of this fact is that the structural ambiguity of English
sentences can often, and usefully, be straightened out using different
symbolizations. One common source of ambiguity is scope ambiguity,
where the English sentence does not make it clear which logical word is
supposed to be in the scope of which other. Multiple interpretations are
possible. In FOL, every connective and quantifier has a well-determined
scope, and so whether or not one of them occurs in the scope of another
in a given sentence of FOL is always determined.
For instance, consider the English idiom,

1. Everything that glitters is not gold.

If we think of this sentence as of the form ‘every F is not G’ where Fx
symbolizes ¢ x glitters” and Gx is ¢ x is not gold’, we would
symbolize it as:

1. Vx(Fx — =Gx),

in other words, we symbolize it the same way as we would ‘Nothing
that glitters is gold’. But the idiom does not mean that! It means that
one should not assume that just because something glitters, it is gold;
not everything that appears valuable is in fact valuable. To capture the
actual meaning of the idiom, we would have to symbolize it instead as
we would ‘Not everything that glitters is gold’, i.e., in the following way:

1. Vx(Fx — Gx)
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Compare the first of these with the previous symbolization: again we see
that the difference in the two meanings of the ambiguous sentence lies
in whether the ‘=’ is in the scope of the Y’ (in the first symbolization)
or VY’ is in the scope of ‘=’ (in the second).

Of course we can alternatively symbolize the two readings using
existential quantifiers as well:

1. =3dx(Fx A Gx)
2. Jx(Fx A —~Gx)

In chapter s:SymbolisingSimpleFOL we discussed how to symbolize
sentences involving ‘only’. Consider the sentence:

2. Only young cats are playful.
According to our schema, we would symbolize it this way:
1. Vx(Px — (Yx A Cx))

The meaning of this sentence of FOL is something like, ‘If an animal
is playful, it is a young cat’. (Assuming that the domain is animals, of
course.) This is probably not what’s intended in uttering sentence 2,
however. It’s more likely that we want to say that old cats are not playful.
In other words, what we mean to say is that if something is a cat and
playful, it must be young. This would be symbolized as:

1. Vx((Cx A Px) — Yx)

There is even a third reading! Suppose we'’re talking about young ani-
mals and their characteristics. And suppose you wanted to say that of
all the young animals, only the cats are playful. You could symbolize
this reading as:

1. Vx((Yx A Px) — Cx)

Each of the last two readings can be made salient in English by placing
the stress appropriately. For instance, to suggest the last reading, you
would say ‘Only young cats are playful’, and to get the other reading
you would say ‘Only young cats are playful’. The very first reading can
be indicate by stressing both ‘young’ and ‘cats’: ‘Only young cats are
playful’ (but not old cats, or dogs of any age).

In chapter 23 we discussed the importance of the order of quanti-
fiers. This is relevant here because, in English, the order of quantifiers
is sometimes not completely determined. When both universal (‘all’)



and existential (‘some’, ‘a’) quantifiers are involved, this can result in

scope ambiguities. Consider:
3. Everyone went to see a movie.

This sentence is ambiguous. In one interpretation, it means that there
is a single movie that everyone went to see. In the other, it means that
everyone went to see some movie or other, but not necessarily the same
one. The two readings can be symbolized, respectively, by

1. Ix(Mx AVy(Py — Sy,x))
2. Vy(Py — Ix(Mx A Sy,x))

We assume here that the domain contains (at least) people and movies,
and the symbolization key,

Py: y is a person,
Mx: » s a movie
Sy, x: » went to see .-

In the first reading, we say that the existential quantifier has wide scope
(and its scope contains the universal quantifier, which has narrow scope),
and the other way round in the second.

Practice exercises

A. Each of the following sentences is ambiguous. Provide a symboliza-
tion key for each, and symbolize all readings.

1. Noone likes a quitter.
2. CSI found only red hair at the scene.



PART VI

FOI-
Semantics



CHAPTER 25

Sets and
Relations

We have discussed the syntax of the language of first-order language
and, using our intuitive understanding of the vocabulary of the lan-
guage, proposed a guideline for symbolizing English sentences in the
language of FOL. We now turn to the semantics, that is, we now want
to spell out truth-conditions for sentences of the language. In TFL the
basic building blocks of the language were atomic sentences that were
declared true or false by a valuation. In FOL the basic building blocks
are names and predicates, which cannot be true or false as they are not
sentences. But if their semantic value is not a truth value, what is it?

25.1  Sets

In symbolizing English sentences in FOL we were required to specify a
domain, that is, the collection of objects the quantifiers range over. For
example, an adequate domain for symbolizing the sentence

> All philosophers are fashionable

might consist of people, e.g., the collection of all living people in the
world. From now on we call a collection of objects (people, things,
numbers,...) a SET and that is what we take domains to be: sets. The
domain we just alluded to would thus be the set consisting of all living
people.
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Any collection of objects form a set and the objects forming the set
are the MEMBERS or ELEMENTS of the set. For example, we can form
the set consisting of Poppy and Naomi, which we convey by writing

{Poppy, Naomi}.
The order in which we list the objects is irrelevant, that is, by writing
{Naomi, Poppy}

we denote the (same) set consisting of Poppy and Naomi. More gener-
ally, sets are identical if and only if they have the same members. So,
in particular, as mentioned above we obtain:

{Poppy, Naomi} = {Naomi, Poppy}.

When specifying a domain we often deal with many objects, and it
would be cumbersome and often impossible to list them all in order to
specify the corresponding set: we cannot list all the living people in the
world. ..

In such a case we use an alternative method for denoting sets: we
single out all objects that have a specific property." For example the set
consisting of all living people will be denoted by:

{o] 0 is a living person}.
Similarly, the set consisting of all students of the UoB is denoted by
{0] 0 is a student of the UoB},
and the set consisting of all cats and dogs by
{o]ois a cat or o is a dog}.

Given this alternate way of denoting sets it is no longer immediate
whether a given object is a member of a set. To convey that a given
object 0 is a member of a set § we shall write

o€ s.

'One needs to spell this idea out with some care for otherwise Russell’s paradox
ensues



Recall that members of a set are also called the elements of the set.
This may be helpful for remembering the meaning of €. For example,
since Tom is a cat we have

Tom € {00 is a cat or o is a dog}.

The latter just tells us that Tom is a member (element) of the set con-
sisting of all cats and dogs.

It is important to remember that sets are identical if and only if they
have the same members. It doesn’t matter which property was used to
single out the elements of a set. This means that

{0] 0 is an animal with a heart}

and
{0] 0 is an animal with kidneys}

denote the same set, as—at least according to the original example—
the animals that have a heart coincides with the animals that have kid-
neys, i.e.,

{o]0 is an animal with a heart} = {0] 0 is an animal with kidneys}

This does not mean that the two properties are identical, but that any
possible difference between the two properties gets lost once we move
to sets.

As just discussed, sets are collections of objects, but weirdly there is
also a set that has no members, i.e., a set with no elements. This set is
called the EMPTY SET and denoted by 0. There are many different ways
to specify the empty set. For example,

{o|o #0}=0.

25.2 Relations
Suppose we have specified as our domain D the set of all animals, i.e.,
D ={o0| o is an animal}.

How are we to understand a predicate like xis a cat’? The pred-
icate will pick out those animals from the domain that are cats, that
is, the set of all cats. As we will see, the sentence “Tom is a cat’ when



symbolized in FOL will be true iff the object picked out by the name
‘Tom’, that is, Tom is a member of the set

{0|0 € D and o is a cat}.

However, ¢ «is a cat’ is a one-place predicate, what about a
two-place predicate like ¢ xis bigger than » 7 Presumably the
predicate applies to Tom and Jerry, as Tom is bigger than Jerry. Im-
portantly, however it is no longer sufficient to merely consider the ob-
jects the predicate applies to, but we also need to specify their order:
¢ x1s bigger than ,° applies to Tom and Jerry in that order; it
does not apply to Tom and Jerry in the order Jerry, Tom—]Jerry is not
bigger than Tom.

Summing up, two place predicates such as xis bigger
than , or ¢ xloves ,, apply to ordered pairs, that is,
pairs of object in a specific order. For example, * xis bigger
than » applies to the ordered pair (Tom, Jerry). The ORDERED
PAIR (Tom, Jerry) is different to the set {Tom, Jerry}, but also different
to the ordered pair (Jerry, Tom). (Tom, Jerry) tells us that Tom is the
first object and Jerry is the second object in contrast (Jerry, Tom) where
it is the other way around and the set {Tom, Jerry} for which the order
does not matter (recall that {Tom, Jerry} = {Jerry, Tom}).

Now, that we know what an ordered pairs are we can form sets of
ordered pairs and such thats, that is, sets that only have ordered pairs
as their elements are called BINARY RELATIONS. While, as discussed
the one-place predicate like ‘is a cat’ picks out the set of all cats in
the domain, the two place predicate picks out a binary relation. More
precisely, it picks out the set

3

{{o01,02) | 01 is bigger than og}.

where we always assume that both o; and oy members of the domain.
To recap: one-place predicates pick out sets and two-place predicates
pick out binary relations. For example, the set

{(Oslo, Norway), (Stockholm, Sweden), (Helsinki, Finland), (Copenhague, Denmark) }

is a binary relation picked out by the two-place predicate xis a
capital of » with a domain, which, e.g., is a set that has Scandina-
vian cities and countries as its elements.

In Part 19 we learned that there are not only two-place predi-
cates but also three-place predicates, fourplace predicates and, in-
deed, at least in principle predicates for any number of argument



places. What does a three place predicate pick out? It picks out a
TERNARY RELATION. While a binary relation is a set of ordered pairs,
a ternary relation is a set of ordered triples. An ordered triple such as
(Pooh, Eeyore, The trampoline) consists of the three-objects Pooh, Eey-
ore, The trampoline in that particular order. The three-place predicate
¢ rbounces with yon . picks out the following ternary
relation:
{{01,09,03) | 01 bounces with 0y on 03}.

So intuitively the sentence
> Pooh bounces with Eeyore on the trampoline
is true if and only if
(Pooh, Eeyore, The trampoline) € {{o1,09,03) | 01 bounces with oz on 03}.

In the same way that a three-place predicate picks out a ternary
relation, an z-place predicate picks out an n-ARY RELATION, that is, a
set of n-tuples (o01,09,...,0,).

25.3 Interpretation

We defined a VALUATION in TFL as any assignment of truth and falsity to
atomic sentences. In FOL, we are going to define an INTERPRETATION.



The role of an interpretation is threefold. An interpretation

* specifies a non-empty set as the domain D;

* assigns exactly one object of the domain to every name
(~ the referent of the name);

e assigns an n-ary relation to every n-place predicate (the
things the predicate is to be true of in the respective or-
der).

> an interpretation assigns a subset of the domain to a
one-place predicate

> an interpretation assigns a binary relation to a two-
place predicate

> an interpretation assigns a ternary relation to a three-
place predicate

> ...
The interpretation of a FOL-expression 7 is denoted by |[7]|:

e if ¢ is a FOL-name, ||¢|| denotes the object of the domain
assigned to ‘¢’ by the interpretation and thus ||¢c|| € D.

o if P is the n-place predicate, then we write || P|| to denote
the n-ary relation assigned to P by the interpretation.

An interpretation thus provides us with all the necessary informa-
tion for interpreting/understanding the predicates and names, as well
as, information about the range of the quantifiers. Importantly, we
are not guaranteed that the interpretation of an n-place predicate is
nonempty, i.e., it is possible that ||P|| = 0. In general, a convenient
way of specifying an interpretation is to supplement a given symboliza-
tion key (cf. Part V) with the relevant interpretation of the names and
predicates.

Suppose we have just symbolized the sentence

> Pooh bounces with Eeyore on the trampoline
using the symbolization key;

domain: Animals and trampolines
p: Pooh
e: Eeyore
¢t: The trampoline



Bxyz: x bounces with y on P

Taking the symbolization key as a guideline we can construct an appro-
priate interpretation as follows:

domain: {o]o is an animal or o is trampolines}
p: Pooh
e: Eeyore
t: The trampoline
Bxyz: {(01,09,03) | 01 bounces with o9 on 03}

Symbolization key and interpretation look very similar. Indeed we will
sometimes be lazy and simply assume the interpretation to be suitably
specified by the symbolization key. However, symbolization key and
interpretation are very different things: an interpretation of the vocab-
ulary of FOL is related to objects, sets and relations while in the sym-
blization key we specify which FOL-symbols are to stand for the English
names and predicates of a sentence, e.g, which FOL-name is to stand
for the name ‘Pooh’. In the interpretation we are saying that the FOL-
name ‘p’ picks out Pooh (the bear) or, in some different interpretation,
a different object of the domain.

We may then ask whether the FOL-sentence Bpet is true in the
interpretation so specified. The answer is that it is true iff, indeed,
Pooh bounces with Eeyore on the trampoline, that is, iff

(Pooh, Eeyore, The trampoline) € {(01,09,03) | 01 bounces with 09 on 03}.

The interpretation we have given above is arguably the intended inter-
pretation, that is, the interpretation that fits the symbolization key and
our understanding of the English sentence. But there are many alter-
native interpretations for the FOL-sentence Bpet, the only thing which
we require is that the interpretation specifies a domain, that the FOL-
name ‘p’, ‘¢’, and ‘¢’ pick out objects from the domain, and that the
three-place B is assigned a ternary relation. As in the case TFL: once
we move to the language of FOL we forget about the particular English
sentences and their meaning.

To clearly distinguish symbolization key and interpretation it is con-
venient to present an interpretation diagrammatically.

Suppose we want to consider just a single two-place predicate, Rxy.
Then we can represent it just by drawing an arrow between two objects,
and stipulate that Rxy is to hold of x and y just in case there is an arrow
running from x to y in our diagram. As an example, we might offer:



1—2
4 3
This would be suitable to characterize an interpretation whose domain
is the set {1,2,3,4}, and:

<—

IR = {(1.2).(2,3).(3.4),(4.1).(1.3)}.

Equally we might offer:

Co .

4<—3i)

for an interpretation with the same domain but where
IR]l = {(1,3),(3,1),(3,4),(1,1),(3,3)}.

If we wanted, we could make our diagrams more complex. For ex-
ample, we could add names as labels for particular objects. Equally,
to symbolize the extension of a one-place predicate, we might simply
draw a ring around some particular objects and stipulate that the set
formed out of the encircled objects constitutes the interpretation of the
predicate H x, say.



CHAPTER 26

Truth in FFOL

We know what interpretations are. Since, among other things, they tell
us how we are to understand FOL-predicates and FOL-names, they will
provide us with an account of the truth of atomic sentences. We already
hinted at this account in the previous chapter. However, we must also
present a detailed account of what it is for an arbitrary FOL sentence
to be true or false in an interpretation.

But we defined what a sentence was by first specifying what a for-
mula is. Formulas like Ex aren’t the sorts of things that are true or false
in interpretations. Only sentences are true or false. But if we provide
extra information we can determine the truth of Ex: we need to specify
what object x stands for. This is done by using a variable assignment:

A VARIABLE ASSIGNMENT assigns to each variable an object the
variable stands for.

We often talk and compare different variable assignments so it’s
convenient to have names for them and we use greek letters «,(,y for
this purpose.

Now consider an interpretation where the domain D is the set of
natural number and the predicate £ picks out the even numbers:

D = {o] 0 is a natural number}

[|E]| = {o]| 0 is an even number}

Then Ex will be true in this interpretation under a variable assignment
« that assigns, say, 4 to x—we write @(x) = 4—but false under a vari-
able assignment g that assigns 3 to x, i.e., B(x) = 3.
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Before we give a general definition of whether a formula is true or
false under a variable assignment in a given interpretation, we need to
introduce one further useful bit of terminology.

Let 8 be a variable assignment and v a variable. Then the vari-
able assignment 8 (v : 0) is a variable assignment that assigns
the same objects to the variables than 8 except possibly to the
variable v to which it assigns o. 5(v : 0) is called an v-VARIANT

of B.

Notice that » is metavariable for variables of FOL and that a vari-
ant assignment can be formulated for every FOL-variable. Variants of
variable assignments will be important for stating the truth conditions
of quantified formulas.

We know from §20 that there are three kinds of formulas in FOL:

e atomic formulas
¢ formulas whose main logical operator is a sentential connective
¢ formulas whose main logical operator is a quantifier

We need to explain truth for all three kinds of formula.

We will provide a completely general explanation in this section.
However, to try to keep the explanation comprehensible, we will, at
several points, use the following interpretation:

domain: {o|o is a person born before before 2000CE})
a: Aristotle
b: Beyoncé
Px: {o]o is a philosopher}
Rxy: {{01,02) | 01 was born before o9}

This will be our go-to example in what follows.

26.1 Atomic formulas

Atomic formulas are things like Px, Pb or Rax.

To see whether an atomic sentence like ‘P4’ is true in an interpreta-
tion, we need to check whether the object that is picked out by the name
‘6’ is a member of the set the interpretation assigns to ‘P’. Looking at
our go-to example this means that ‘Pd’ is true in the interpretation iff

Beyoncé € {0 o is a philosopher}.



Since Beyoncé is not a philosopher, i.e.,
Beyoncé ¢ {0 o is a philosopher}

‘Pb’ is false in that interpretation.

What about Px? This reads something like ‘they are a philoso-
pher’. The question is who ‘they’ refers to, or in the logic terms: who
x is. This depends on a variable assignment. A variable assignment
needs to give an object in our domain for the variable x. For example,
a variable assignment @ assign Beyoncé to x, i.e., a(x)=Beyoncé and
since Beyoncé is not in the interpretation of ‘P’ ‘Px’ is not true in the
interpretation under the variable assignment o. However, since Aris-
totle is a philosopher ‘Px would be true in the interpretation under a
variable assignment (,

B (x) = Aristotle.

A variable assignment doesn’t need to specify one of the objects that
are named, it can give us anyone in our domain, e.g. Queen Elizabeth
II. Under the variable assignment which assigns x Queen Elizabeth II,
‘Pyx’ is false: Queen Elizabeth II is not a philosopher.

Likewise, on this interpretation, Rab is true iff the object named
by a was born before the object named by 4. Well, Aristotle was born
before Beyoncé. So Rab is true. Equally, Raa is false: Aristotle was not
born before Aristotle. How about Rax? Well what does our variable
assignment specify for x? If we have a variable assignment where x is
Queen Elizabeth II, then Rax is true: Aristotle was born before Queen
Elizabeth II.

Dealing with atomic formulas, then, is very intuitive. The only thing
to be attentive to is the difference between names or variables:

A TERM is either a name or a variable. If ¢ is a term then the DE-
NOTATION OF THE TERM in the interpretation under an variable
assignment a, ||£||“ is the object pick out by the interpretation,
if ¢ is a name and @ (¢) otherwise:

2] = l£]l,  if ¢ is name;
a(t), iftis a variable.

With this final bit of terminology out of way we can state the truth
conditions for atomic formuals. Let R be an n-place predicate and
t1, &y ... ¢, terms. Then



Rty ... ¢, is true in an interpretation under a variable assign-
ment « iff

el Neall®) € IR

From this definition of the truth of atomic formulas we can tell that
an assignment only plays an important role if one of the terms is a
variable. If all terms are name then an atomic formula is true in an
interpretation under a variable assignment iff it is true in the interpre-
tation under every variable assignment. We will see that that is the case
for sentences more generally: the choice of the variable assignment is
only relevant to determine whether a formulas with free variables is true
in an interpretation (under the chosen variable assignment). For this
reason we sometimes do not mention the variable assignment when we
talk about the truth of sentences. However, as we shall see the variable
assignment will still have a role to play when we talk about the truth
and falsity of quantified sentencesd.

26.2 Sentential connectives

We saw in §20 that FOL formulas can be built up from simpler ones
using the truth-functional connectives that were familiar from TFL. The
rules governing these truth-functional connectives are exactly the same
as they were when we considered TFL. Here they are:



—X is true in an interpretation under a variable assignment iff
X is false in that interpretation under that variable assignment

X AY is true in an interpretation under a variable assignment
iff

both X and Y is true in that interpretation under that variable
assignment

X VY is true in an interpretation under a variable assignment
iff

either X is true or Y is true in that interpretation under that
variable assignment

X — Y is true in an interpretation under a variable assignment
iff
either X is false or Y is true in that interpretation under that

variable assignment

This is just another presentation of the truth rules we gave for the
connectives in TFL; it just does so in a slightly different way. Some
examples will probably help to illustrate the idea. On our go-to inter-
pretation:

‘Pa’ is true

‘Rab A Pb is false because, although ‘Rad’ is true, ‘Pd’ is false
‘—Pa’ is false

‘PaA—(Pb A Rab)’ is true, because ‘Pa’ is true and ‘Pd’ is false,
so ‘Pb A Rab’ is false, thus ‘~(Pb A Rab)’ is also true.

Make sure you understand these examples.
We can also carry variable assignments around with us. Consider
a variable assignment which assigns David Hume to x. Then

‘Px’ is true under this variable assignment: David Hume was a
philosopher

‘Bxa’ is false under this variable assignment: David Hume was
born after Aristotle

‘Px — Bxa’ is false under this variable assignment: ‘Px’ is true
and ‘Bxa’ is false, so by our rule for —, ‘Px — Bxa’ is false.



26.3 When the main logical operator is a quantifier

The exciting innovation in FOL, though, is the use of quantifiers.
Consider the following interpretation:

2w d

Alice Bob

& _ &

@t W

Cathy Denny

domain: {Alice, Bob, Cathy, Denny}
Hx: {Bob}
Sx: {Alice, Bob}
Cx: {Alice, Cathy}

<

(Hint: read Hx as » has horns’, Sx as « has horns’ and

CX as® <has a computer’)

Is ‘IxSx’ true in this interpretation under a variable assignment? Intu-
itively this should be true iff there is an object in the domain which has
a sword and since ||S|| = {Alice, Bob} should indeed come out as true.
We can directly spell out these intuitive truth conditions by using the
notion of an x-variant of the initial variable assignment:

‘JxSx’ true in this interpretation under the variable assign-
ment « iff there exists an object o of the domain, i.e. 0 € D,
such that ‘%’ is true in the interpretation under the variable
assignment a(x : 0).

Then, to show that ‘IxSx’ true in the interpretation under an arbitrary
variable assignment it suffices to find an object in the domain, say, Alice
such that ‘Sx’ is true under the variable assignment a(x : Alice) (we
can also denote this variable assignment by x + Alice). Under this
variable assignment, Sx is true: Since Alice does have a sword, i.e.,
Alice € ||S]|, Sx is indeed true under this assignment. This guaranteed
the truth of ‘3x8x’: There is a choice of an object in our domain for x
under which Sx is true.



What about VxSx? Intuitively, this should be true iff every object
in the domain which has a sword. Appealing to the x-variant of out
initial variable assignment we can again spell out the truth conditions
in a straightforward:

‘VxSx’ true in this interpretation under the variable assign-
ment « iff for every object o of the domain ‘Sx’ is true in
the interpretation under the variable assignment a/(x : 0).

Since Denny ¢ ||S|| = {Alice, Bob} ‘VxSx’ to comes out false in this
interpretation: ‘Sx’ is not true in the interpretation under the variable
assignment @ (x : Denny).

What about Vx(Sx — (Hx VvV Cx))? To check whether it is true we
need to check whether ‘Sx — (Hx Vv Cx) is true for every choice of
object that is assigned to x:

‘Sx Hx Cx HxVvCx Sx— (HxVCx)

x +— Alice T F T T T
x +— Bob T T F T T
x> Cathy | F F T T T
x+ Denny | F F F F T

So ‘Sx — (H=x Vv Cx)’ is true in the interpretation under every assign-
ment «(x : o) for every object 0 € D. And so Vx(Sx — (Hx V Cx)) is
true is true in the interpretation under every variable assignment..

We have to tread more carefully once we start having multiple quan-
tifiers. Let’s walk through some cases.

Consider a new interpretation:

domain: {1,2,3,4}
Rxy: {{01,02) | There is an arrow from o; to og in the diagramj}.
Sx: {o|There is a square around o in the diagram}.

Is 3xVyRxy true? Intuitively, the sentence is true iff there is an object
in the domain from which there is an arrow to all other arrows. Now,



let’s work through the example step by step and see whether we get the
intuitive outcome.

1. ‘AxVyRxy’ is true in the interpretation under an (arbitrary) vari-
able assignment « iff there is a number n € {1,2,3,4} such
‘YyRxy’ is true in the interpretation under the variable assign-
ment a(x : n).

> We choose n to be the number 3 (with some foresight)

2. ‘VyRxy’ is true in the interpretation under the variable assign-
ment «(x : 3) iff Rxy is true in the interpretation under the vari-
able assignment a(x : 3)(y : m) for all m € {1,2,3,4}.

> a(x:3)(y : m) looks very complicated; it is a y-variant of an
x-variant. .. But all it says is that the variable y gets assigned
the number m, i.e., y — m and the variable x gets assigned
the number 3, i.e., x — 3.

3. Rxy is true in the interpretation under the variable assignment
a(x:3)(y : m) for all m € {1,2,3,4} iff there is an arrow from 3
to every number in the set {1,2,3,4}. In that case we have that
‘Rxy’ is true in the interpretation under the variable assignment
a(x : 3)(y : 1), the variable assignment a(x : 3)(y : 2), the
variable assignment a(x : 3)(y : 3) and also a(x : 3)(y : 4).

4. Since there is an arrow from 3 to every number we can conclude
that .“IxVyRxy’ is true in the interpretation

What about ‘x3y(Rxy A Ryx)’? To show that it is true we will want
to choose an object o that we can assign to x such that ‘Iy(Rxy A Ryx)’
is true uunder the assignment a(x : 0). Let’s consider x — 3 (again
I’'m using my foresight of what will come to choose carefully). Now
is ‘y(Rxy A Ryx)’ true under the variable assignment x — 3 (ie.,
a(x : 3)? We need to find y-variant of this assignment which chooses
an object such that ‘Rxy A Ryx’ is true. Consider y — 3. We now have a
variable assignment a(x : 3)(y : 3). x and y are different variables but
there’s nothing stopping them being assigned the same object. And we
can then consider whether Rxy A Ryx is true under this interpretation.
Well, ‘Rxy’ is true: 3 does have an arrow to 3. And ‘Ryx’ is also true:
3 does have an arrow to 3. So by our clause for A, ‘Rxy A Ryx’ is true
under the variable assignment a(x : 3)(y : 3). And so ‘Jy(Rxy A Ryx)’



is true under the variable assignment @(x : 3). And so Ix3Iy(RxyARyx)
is true in this interpretation.

One more example: Vx(Sx — JyRxy)? To check this is true we will
need to check for every number n whether ‘Sx — 3yRxy’ is true under
the variable assignment a(x : n):

‘ Sx JyRxy Sx — JyRxy

x—1| T ? ?
x—2| F T
x—3| T ? ?
x—4 | F T

So we need to check whether IyRxy is true under the variable as-
signments x — 1 and x +— 3. In the two other cases the conditional
will be trivially true

Consider x — 1. We can find an object for y such that ‘Rxy’ is true
under that variable assignment, namely, y — 2. Since there is an arrow
from 1 to 2, ‘Rxy’ is true in the variable assignment a(x : 1)(y : 2). Thus
‘IyRxy’ is true under the variable assignment a(x : 1). For x — 3 we
can also find an assignment for y such that ‘Rxy’ is true (which one?)
and thus ‘JyRxy’ is also true under the variable assignment a(x : 3).

| $x  3yRxy  Sx — FyRxy

x—1| T T T
x— 2| F ? T
x—3| T T T
x—4 | F ? T

So Vx(Sx — JyRxy) is true. Informally we might say this as: for every
number that has a square around it has an arrow going out of it.

One final example: VxVyRxy. To check this we will need to con-
sider all choices for x and all choices for y and check Rxy is true on all
of them. There are 16 such choices. But we won’t have to go through
them all: it’ll be false. Consider x — 1 and y — 4. Rxy is false under
this variable assignment: there is no arrow from 1 to 4. Thus VyRxy is
false on the variable assignment a(x : 1). And so VxVyRxy is false in
the interpretation under the variable assignment a. However, « itself
played no role in the evaluation of VxVyRxy. All that mattered was
the objects that were assigned to x and y, and for x and y we consid-
ered the x-variants/y-variants. So VxVyRxy is not only true under the
variable assignment « in this interpretation but true under all variable
assignments. This goes back to what we said at the end of Section 26.1:



the particular choice of an variable assignment is only relevant if we
are evaluating the truth of formulas with free variables. VxVyRxy is a
sentence, as it has no free variables.

More generally, if we have a quantifier like 3x or Vx we ignore what-
ever our original variable assignment told us about x but consider suit-
able x-variants. So when all our variables are bound by quantifiers, all
the original components of our variable assignment are ignored. To
summarise: Sentences are simply true or false in interpretations, vari-
able assignments don’t matter.

Now for our formal definition:

VX is true in the interpretation under a variable assignment @
iff X is true in the interpretation under the variable assignment
a(v : o) for every o € D.

JvX is true in the interpretation under a variable assignment o
iff X is true in the interpretation under the variable assignment
a(v : o) for some 0 € D.

Practice exercises

A. Consider the following interpretation:

¢ The domain comprises only Corwin and Benedict
¢ ‘Ax’ is to be true of both Corwin and Benedict

e ‘Bx’ is to be true of Benedict only

e ‘N’ is to be true of no one

¢ ‘¢’ is to refer to Corwin

Determine whether each of the following sentences is true or false in
that interpretation:

Bec

Ac & —=N¢

Nc¢ — (Ac Vv Be)
Vx Ax

Vx-Bx

dx(Ax A Bx)
dx(Ax — Nx)
Vx(Nx V -Nx)
dx Bx — Vx Ax

© XN o ® b



B. Consider the following interpretation:

¢ The domain comprises only Lemmy, Courtney and Eddy
* ‘Gx’ is to be true of Lemmy, Courtney and Eddy.

e ‘Hy’ is to be true of and only of Courtney

e ‘Mx’ is to be true of and only of Lemmy and Eddy

¢ ‘¢’ is to refer to Courtney

e ‘¢’ is to refer to Eddy

Determine whether each of the following sentences is true or false in
that interpretation:

Hc¢

He

Mcv Me
Ge vV -Ge

Mc¢ — Ge¢

dx Hx

Vx Hx

dx-Mx
Ax(Hx A Gx)
Ax(Mx A Gx)

. Vx(Hx Vv Mx)
12. AxHx AJx Mx
13. Vx(Hx & —Mx)
14. Ix Gx A Ix-Gx
15. Vx3y(Gx A Hy)

CL O ok @ b =

[
=

C. Following the diagram conventions introduced at the end of §23,
consider the following interpretation:

Cl—)Q

3 4 5.)

Determine whether each of the following sentences is true or false in
that interpretation:

1. dx Rx,x



SE PN ST w P

Vx Rx,x

JxVy Rx,y

JxVy Ry, x

VaVyVz((Rx,y A Ry,z) — Rx,2)
VxVyVz((Rx,y A Rx,z) — Ry, z)
AxVy-Rx,y

Vx(3y Rx,y — Ty Ry, x)
3x3y(-x = y A Rx,y A Ry, x)
FxVy(Rx,y & x =)

. AxVy(Ry,x & x =y)

Jx3y(-x =y ARx,y AVz(Rz,x & y = 2))



CHAPTER 27

Semantic
concepts

Offering a precise definition of truth in FOL was more than a little
fiddly, but now that we are done, we can define various central logical
notions. These will look very similar to the definitions we offered for
TFL. However, remember that they concern interpretations, rather than
valuations.

X1.Xo,.... X, 0 Z

is vALID iff there is no interpretation in which all of X7, Xy, ..., X,
are true and in which Z is false.

The other logical notions also have corresponding definitions in
FOL:
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An FOL sentence X is a LOGICAL TRUTH iff X is true in
every interpretation.

X is a CONTRADICTION iff X is false in every interpreta-
tion.

Two FOL sentences X and Y are LOGICALLY EQUIVALENT
iff they are true in exactly the same interpretations as each
other.

The FOL sentences X7, Xo,. .., X, are JOINTLY LOGICALLY
CONSISTENT iff there is some interpretation in which all
of the sentences are true. They are JOINTLY LOGICALLY
INCONSISTENT iff there is no such interpretation.




Using

interpretations

28.1 Logical truths and contradictions

Suppose we want to show that ‘IxAxx — Bd’ is not a logical truth. This
requires showing that the sentence is not true in every interpretation;
i.e., that it is false in some interpretation. If we can provide just one
interpretation in which the sentence is false, then we will have shown
that the sentence is not a logical truth.

In order for ‘IxAxx — Bd’ to be false, the antecedent (IxAxx) must
be true, and the consequent (Bd) must be false. To construct such an
interpretation, we start by specifying a domain. Keeping the domain
small makes it easier to specify what the predicates will be true of, so
we will start with a domain that has just one member. For concreteness,
let’s say it is the city of Paris.

domain: {Paris}

The name d must refer to something in the domain, so we have no
option but:

d: Paris

Recall that we want 3xAxx to be true, so we want all members of the
domain to be paired with themselves in the extension of 4. We can just
offer:

233



Axy: {o]o =0}

Now Add is true, so it is surely true that IxA4xx. Next, we want Bd
to be false, so the referent of d must not be in the extension of B. We
might simply offer:

Bx: {o| o is in Germany}

Since Paris is not in Germany the set {0 | 0 is in Germany} does no have
any elements that are in the domain of the interpretation. This means
that we have an interpretation where ‘Ix4xx’ is true, but where ‘Bd’
is false. So there is an interpretation where IxAxx — Bd is false. So
JxAxx — Bd is not a logical truth.

We can just as easily show that ‘Ix4xx — Bd’ is not a contradiction.
We need only specify an interpretation in which ‘IxAxx — Bd’ is true;
i.e., an interpretation in which either ‘IxAxx’ is false or ‘Bd’ is true.
Here is one:

domain: {Paris}
d: Paris
Axy: {o]o =0}
Bx: {o]o is in France}

This shows that there is an interpretation where ‘IxAxx — Bd’ is true.
So ‘xAxx — Bd’ is not a contradiction.

28.2 Logical equivalence

Suppose we want to show that Vx$x and 3xSx are not logically equiva-
lent. We need to construct an interpretation in which the two sentences
have different truth values; we want one of them to be true and the
other to be false. We start by specifying a domain. Again, we make
the domain small so that we can specify extensions easily. In this case,
we will need at least two objects. (If we chose a domain with only one
member, the two sentences would end up with the same truth value.
In order to see why, try constructing some partial interpretations with
one-member domains.) For concreteness, let’s take:

domain: {Ornette Coleman, Miles Davis}

We can make JxSx true by including something in the extension of .S,
and we can make YxSx false by leaving something out of the extension
of §. For concreteness we will offer:



Sx: {o] o plays saxophone}

Now ‘IxSx’ is true, because Sx is true of Ornette Coleman. Slightly
more precisely, extend our interpretation by allowing ¢ to name Ornette
Coleman. ‘Sc’ is true in this extended interpretation, so ‘xSx’ was
true in the original interpretation. Similarly, ‘VxSx’ is false, because
Miles Davis¢ ||S||. Slightly more precisely, extend our interpretation
by allowing d to name Miles Davis. Then ‘Sd’ is false in this extended
interpretation, so ‘VxSx’ was false in the original interpretation. We
have provided a counter-interpretation to the claim that ‘VxSx’ and
‘AxSx’ are logically equivalent.

To show that X is not a logical truth, it suffices to find an inter-
pretation where X is false.

To show that X is not a contradiction, it suffices to find an
interpretation where X is true.

To show that X and Y are not logically equivalent, it suffices to
find an interpretation where one is true and the other is false.

28.3 Validity, logical consequence and consistency

To test for validity, logical consequence, or consistency, we typically
need to produce interpretations that determine the truth value of several
sentences simultaneously.

Consider the following argument in FOL:

Ax(Gx — Ga) .. IxGx — Ga

To show that this is invalid, we must make the premise true and the
conclusion false. The conclusion is a conditional, so to make it false,
the antecedent must be true and the consequent must be false. Clearly,
our domain must contain two objects. Let’s try:

domain: {Karl Marx, Ludwig von Mises}
Gx: {olo hated communism} (={Ludwig von Mises})
a: Karl Marx

Given that Marx wrote The Communist Manifesto, Ga is plainly false
in this interpretation. But von Mises famously hated communism, so
3xGx is true in this interpretation. Hence ‘IxGx — Ga’ is false, as
required.



Does this interpretation make the premise true? Yes it does! Note
that Ga — Ga is true. (Indeed, it is a logical truth.) But then certainly
‘Ax(Gx — Ga)’ is true, so the premise is true, and the conclusion is
false, in this interpretation. The argument is therefore invalid.

In passing, note that we have also shown that 3xGx — Ga is not a
logical consequence of 3x(Gx — Ga). Equally, we have shown that the
sentences 3x(Gx — Ga) and =(3xGx — Ga) are jointly consistent.

Let’s consider a second example. Consider:

Vx3yLxy .. yVxLxy

Again, we want to show that this is invalid. To do this, we must make
the premises true and the conclusion false. Here is a suggestion:

domain: {o|o is a UK citizen currently in a civil partnership with another UK citize
Lxy: {{01,09) |01 is in a civil partnership with oy}

The premise is clearly true on this interpretation. Anyone in the domain
is a UK citizen in a civil partnership with some other UK citizen. That
other citizen will also, then, be in the domain. So for everyone in
the domain, there will be someone (else) in the domain with whom
they are in a civil partnership. Hence ‘Vx3yLxy’ is true. However,
the conclusion is clearly false, for that would require that there is some
single person who is in a civil partnership with everyone in the domain,
and there is no such person, so the argument is invalid. We observe
immediately that the sentences ‘Vx3yLxy and —~3yVxLxy’ are jointly
consistent and that ‘IyVxLxy, is not a logical consequence of ‘Vx3yLxy’.

For our third example, we’ll mix things up a bit. In §??, we described
how we can present some interpretations using diagrams. For example:

C1—>2

3

Using the conventions employed in §25.3, the domain of this interpre-
tation is the first three positive whole numbers, and Rxy is true of x
and y just in case there is an arrow from x to y in our diagram. Here
are some sentences that the interpretation makes true:

* VxdyRyx



This

JxVyRxy witness 1

AxVy(Ryx & x =y) witness 1
Jx3y3z2((—y = 2z A Rxy) A Rzx) witness 2
dxVy-Rxy witness 3
Jx(3yRyx A —3yRxy) witness 3

immediately shows that all of the preceding six sentences are

jointly consistent. We can use this observation to generate invalid ar-
guments, e.g.:

Vx3yRyx,IxVyRxy .. VxIyRxy
AxVyRxy,AxVy—Rxy .. =IxTyTz(—y = 2 A (Rxy A Rzx))

and many more besides.

To show that X1,Xo,...,X, .. Z is invalid, it suffices to find an

interpretation where all of X, Xy,...,X, are true and where Z
is false.

That same interpretation will show that Xj,Xy,...,X, do not
entail Z.

It will also show that X7, Xs,...,X,,—Z are jointly consistent.

When you provide an interpretation to refute a claim—to logical
truth, say, or to entailment—this is sometimes called providing a counter-
interpretation (or providing a counter-model).

Practice exercises

A. Show that each of the following is neither a validity nor a contra-
diction:

SAEANL I

7.

Da A Db

Ax Tx,h
PmA—-VxPx

Vz Jz o 3y Jy
Vx(Wax,m,nV JyLx,y)
Ax(Gx — Vy My)
Ax(x=hAx=1i)

B. Show that the following pairs of sentences are not logically equiva-

lent.



Ja, Ka

Ax Jx, Jm

Vx Rx,x, 3x Rx,x

Jx Px — Qc¢, Ix(Px — Qc)
Vx(Px — —0x), 3x(Px A =Qx)
Jx(Px A Qx), Ax(Px — Qx)
Vx(Px — Qx), Vx(Px A Qx)
Vx3y Rx,y, IxVy Rx,y

Vx3y Rx,y, Vx3y Ry, x

© XN ST @ o

C. Show that the following sentences are jointly satisfiable:

Ma,-Na,Pa,—Qa
Le,e,Le,g,—~Lg,e,~Lg, g
—~(MaA3JxAx),MaV Fa,Yx(Fx — Ax)
Ma~v MbMa — Vx—~Mx

Vy Gy,Vx(Gx — Hx),3y—~1y

Ax(Bx Vv Ax),VxﬂCx,Vx[(Ax A Bx) — Cx]
dx Xx,3x Y x,Vx(Xx & =Y x)

Vx(PxV Qx),3x~(Qx A Px)

J2(Nz A 0z,2),YxVy(0x,y — 0y,x)
—3xVy Rx,y,Vx3y Rx,y

11. —~Ra,a,Vx(x = aV Rx,a)

12. VaVyVz[(x =y Vy=2)Vax=2z], xTy ~x =y
13. xFy((Zx AN Zy)Ax=y),~Zd,d =¢

CL PN ok @ 0

D. Show that the following arguments are invalid:

Vx(Ax — Bx) .. 3x Bx

Vx(Rx — Dx),Vx(Rx — Fx) .. 3x(Dx A Fx)
Jx(Px — Qx) .. Ix Px

NaANbANc.. VYxNx

Rd,e,3x Rxd .. Re,d

Ax(Ex A Fx),3x Fx —» 3x Gx .. Ax(Ex A Gx)
VxOx,c,VYxO0c,x .. VxOx,x

Ax(Jx A Kx),Ix—~Kx,3x—Jx . Ix (- Jx A =Kx)
La,b - VxLx,b,3x Lx,b .. Lb,b

Vx(Dx — 3y Ty,x) . yTz =y =z

CL PN ok @ b
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Reasoning

about all
interpretations

29.1 Logical truths and contradictions

We can show that a sentence is no¢ a logical truth just by providing
one carefully specified interpretation: an interpretation in which the
sentence is false. To show that something is a logical truth, on the other
hand, it would not be enough to construct ten, one hundred, or even
a thousand interpretations in which the sentence is true. A sentence
is only a logical truth if it is true in every interpretation, and there are
infinitely many interpretations. We need to reason about all of them,
and we cannot do this by dealing with them one by one!

Sometimes, we can reason about all interpretations fairly easily. For
example, we can offer a relatively simple argument that ‘Raa — Raa’
is a logical truth:

Any relevant interpretation will give ‘Raa’ a truth value. If
‘Raa’ is true in an interpretation, then ‘Raa — Raa’ is true
in that interpretation. If Raa is false in an interpretation,
then Raa — Raa is true in that interpretation. These are
the only alternatives. So ‘Raa < Rada’ is true in every
interpretation. Therefore, it is a logical truth.
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This argument is valid, of course, and its conclusion is true. However,
it is not an argument in FOL. Rather, it is an argument in English about
FOL: it is an argument in the metalanguage.

Note another feature of the argument. Since the sentence in ques-
tion contained no quantifiers, we did not need to think about how to
interpret a and R; the point was just that, however we interpreted them,
Raa would have some truth value or other. (We could ultimately have
given the same argument concerning TFL sentences.)

Here is another bit of reasoning. Consider the sentence Vx(Rxx —
Rxx). Again, it should obviously be a logical truth, but to say precisely
why is quite a challenge. We cannot say that Rxx — Rxx is true in
every interpretation, since Rxx — Rxx is not even a sentence of FOL
(remember that x is a variable, not a name). So we have to be a bit
cleverer.

Consider some arbitrary interpretation. Consider some ar-
bitrary member of the domain, which, for convenience, we
will call obbie, and suppose we extend our original inter-
pretation by adding a new name, ¢, to name obbie. Then
either Rcc will be true or it will be false. If Rcc is true,
then Rcc < Rcc is true. If Rec is false, then Rcc — Rec
will be true. So either way, Rcc — Rcc is true. Since
there was nothing special about obbie—we might have cho-
sen any object—we see that no matter how we extend our
original interpretation by allowing ¢ to name some new ob-
ject, Rec — Rec will be true in the new interpretation. So
Vx(Rxx — Rxx) was true in the original interpretation. But
we chose our interpretation arbitrarily, so Vx(Rxx — Rxx)
is true in every interpretation. It is therefore a logical truth.

This is quite longwinded, but, as things stand, there is no alternative.
In order to show that a sentence is a logical truth, we must reason about
all interpretations.

29.2 Other cases

Similar points hold of other cases too. Thus, we must reason about all
interpretations if we want to show:

« that a sentence is a contradiction; for this requires that it is false
in every interpretation.



« that two sentences are logically equivalent; for this requires that
they have the same truth value in every interpretation.

« that some sentences are jointly inconsistent; for this requires that
there is no interpretation in which all of those sentences are true
together; i.e. that, in every interpretation, at least one of those
sentences is false.

e that an argument is valid; for this requires that the conclusion is
true in every interpretation where the premises are true.

* that some sentences entail another sentence.

The problem is that, with the tools available to you so far, reasoning
about all interpretations is a serious challenge! Let’s take just one more
example. Here is an argument which is obviously valid:

Vx(Hx A Jx) .. VxHx

After all, if everything is both H and ], then everything is H. But we
can only show that the argument is valid by considering what must be
true in every interpretation in which the premise is true. To show this,
we would have to reason as follows:

Consider an arbitrary interpretation in which the premise
Vx(Hx A Jx) is true. It follows that, however we expand the
interpretation with a new name, for example ¢, Hc A J¢ will
be true in this new interpretation. H ¢ will, then, also be true
in this new interpretation. But since this held for any way of
expanding the interpretation, it must be that VxHx is true
in the old interpretation. We’ve assumed nothing about the
interpretation except that it was one in which Vx(Hx A Jx)
is true, so any interpretation in which Vx(Hx A Jx) is true
is one in which VxH x is true. The argument is valid!

Even for a simple argument like this one, the reasoning is somewhat
complicated. For longer arguments, the reasoning can be extremely
torturous.

The following table summarises whether a single (counter-
)interpretation suffices, or whether we must reason about all interpre-
tations.



Yes

No

logical truth?  all interpretations
contradiction?  all interpretations

equivalent? all interpretations
consistent? one interpretation
valid? all interpretations
entailment? all interpretations

This might usefully be compared with the table at the end of §??.
The key difference resides in the fact that TFL concerns truth tables,
whereas FOL concerns interpretations. This difference is deeply impor-
tant, since each truth-table only ever has finitely many lines, so that a
complete truth table is a relatively tractable object. By contrast, there
are infinitely many interpretations for any given sentence(s), so that

one counter-interpretation
one counter-interpretation
one counter-interpretation
all interpretations

one counter-interpretation
one counter-interpretation

reasoning about all interpretations can be a deeply tricky business.



PART VII

Natural
deduction for
FOL



Basic rules for
FOL

FOL makes use of all of the connectives of TFL. So proofs in FOL
will use all of the basic and derived rules from Part IV. We will also
use the proof-theoretic notions (particularly, the symbol ‘+’) introduced
there. However, we will also need some new basic rules to govern the
quantifiers.

30.1  Universal elimination

Consider:

1. Everyone is happy
.. Therefore: Catrin is happy.

This is a valid argument. Generally, then, from the claim that every-
thing is F, you can infer that any particular thing is F. You name it; it’s
F. So the following should be fine:

1 | VxFx
2 | Fa VE 1
We obtained line 2 by dropping the universal quantifier and replacing
‘x> with ‘@’.
This isn’t restricted to simple properties. Consider the following
argument:
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1. Every cat is sleeping.
.. Therefore: If Fluffy is a cat, then she is sleeping.

This is a valid argument. And it will be allowed by our rule VE:

Vx(Cx — Sx)

Cf — Sf VE 1

Note here that we have to replace two instances of ‘4’ with our name:
‘f” or Fluffy. Indeed it would have been fine to do with any name. We
can even do it with names we already have. Consider the following:

1. Pavel owes everyone money.
.. Therefore: Pavel owes himself money.

We we symbolise this as:

1. VxOpx
.. Therefore: Opp

This is valid: the premise says everything in the domain owes money to
Pavel; and Pavel is something in the domain. So it implies that Pavel
owes money to himself.

This argument is also directly allowed by our rule VE:

1 | VxOpx
2 | Opp VE 1

We can now give our general rule: whenever you have a sentence
VaX(...x...x...), for example VxFx, Vx(Cx — Sx), VxOpx; one can
conclude that we have the sentence which is obtained by stripping of
the quantifier and replacing every free occurrence of the variable by a
name, be it a,b,¢. ... So we could derive Fa, Cf — Sf or Opp.

Here is the formal specification of the universal elimination rule
(VE):

m | VxX(...x...x...)

X(..c...c...) VE m




The point is that you can obtain any substitution instance of a uni-
versally quantified formula: replace every instance of the quantified
variable with any name you like. (Of course, you need to replace
every free occurrence of x in X by the same name.)

I should emphasize that (as with every elimination rule) you can
only apply the VE rule when the universal quantifier is the main logical
operator. Thus the following is outright banned:

1 | VxBx — Bk

2 | Bb — Bk naughtily attempting to invoke VE 1

This is illegitimate, since ‘Vx’ is not the main logical operator in line
1. (If you need a reminder as to why this sort of inference should be
banned, reread §??.)

30.2 Existential introduction

The following argument is valid:

1. Catrin is happy
.. Therefore: Someone is happy.

This is the idea of our existential introduction rule: from the claim
that some particular thing is F, you can infer that something is F:

1 | Fa
2 dxFx a1

We obtained line 2 by replacing the name ‘@’ with the variable ‘x’ and
adding 3x in front of the sentence. This will be permissible by our rule
of Al

This isn’t restricted to simple properties.

1. Bob is a money and knows sign language.
.. Therefore: There is a monkey who knows sign language.

1 | MbASH
2 | Ix(Mx A Sx) a1

Or even



1. Catrin is friends with someone who is friends with everyone.
.. Therefore: Someone is friends with someone who is friends with
everyone.

| Ax(Fex ANVyFxy)

1
2 ‘ Jz3Ax(Fzx AVyFxy) a1

We replaced the name, ‘¢’ with the variable ‘2’ and added 3z at the
beginning of the sentence.

This rule will now allow us to carefully work through our brain
teaser from §13.2

Three people are standing in a row looking at eachother.

o A
v @

Alice Bob Charlie

Alice is happy. Charlie is not happy. Is there someone who
is happy who is looking at someone who is not happy?

Answer: Yes.
We can formalise this argument as:

Lab, Lbc, Ha, —Hc¢ .. TxAy(Hx A (Lxy A ~Hx)).

And we can show it is valid. In §13.2 we wrote this in a pseudo-formal
style.



Bob is either happy or he’s not happy
Suppose Bob is happy

Then happy Bob is looking at unhappy Charlie
So someone who is happy is looking at someone who is not happy.

Suppose Bob is unhappy

Then happy Alice is looking at unhappy Bob

So someone who is happy is looking at someone who is not happy.

(oo e e R R

Therefore, someone who is happy is looking at someone who is not hapj

We can now fill out the details of this to see that it’s a formal proof:



1 Lab

2 Lbc

3 Ha

4 -Hc¢

5 Hbv -Hb LEM

6 Hb

7 Lbc AN —Hc AL 2,6
8 Hb A (Lbe A —Hc) A7, 6
9 Ay(Hb A (Lby A ~Hy)) 18

10 AxJy(Hx A (Lxy A —Hx)) a9

11 -Hb

12 Lab N-Hb AI'11,1
13 Ha A (Lab A —Hb) AL 3, 12
14 Ay(Ha A (Lay A ~Hy)) 113
15 AxJy(Hx A (Lxy A —Hx)) 114
16 | IxTy(Hx A Lxy A —Hx) VE 5, 6-10, 11-15

Consider the following example:

1. Narcissus loves himeself.
.. Therefore: There is someone who loves Narcissus.

This is a valid argument. The formalised version, which will be allowed
by our rule is:

1 Lnn

2 | 3xLxn a1

This shows us that we do not have to replace all instances of the name
with the variable. Though of course we can if we wish: we could also
deduce there is someone who loves himself.



To give our rule in general we need to introduce some new notation
for this ability to replace just some of our instances of the name: If X
is a sentence containing the name ¢, we can emphasize this by writing
‘X(...c...c...)’. We will write ‘X(...x...c...)" to indicate any
formula obtained by replacing some or all of the instances of the
name ¢ with the variable x. Armed with this, our introduction rule
is:

m | X(...c...c...)

xX(..x...c...) A m

x must not occur in X(...c...c...)

All the cases we’ve seen in this section follow this rule.

You might have noticed the additional constraint that’s added to
the rule. It is part of the rule; so if you are asked to write the rule 31
you must include this constraint. However, you will not need to worry
about it in practice. It’s simply there to guarantee that applications of
the rule yield sentences of FOL. If the rule were not there we would be
allowed to argue as follows:

1 dxLnx
2 | AxIxLxx naughtily attempting to invoke 3I 1

But this expression on line 2 contains clashing variables. It will not
count as a sentence of FOL.

30.3 Empty domains
The following proof combines our two new rules for quantifiers:
1 | VaFx

2 | Fa VE 1
3 | IxFx a2

Could this be a bad proof? If anything exists at all, then certainly we
can infer that something is I, from the fact that everything is F. But what



if nothing exists at all? Then it is surely vacuously true that everything
is I; however, it does not following that something is F, for there is
nothing to be F. So if we claim that, as a matter of logic alone, ‘IxFx’
follows from ‘VxFx’, then we are claiming that, as a matter of logic alone,
there is something rather than nothing. This might strike us as a bit
odd.

Actually, we are already committed to this oddity. In §19, we stip-
ulated that domains in FOL must have at least one member. We then
defined a logical truth (of FOL) as a sentence which is true in every
interpretation. Since ‘Jx(Ax V —A4x)’ will be true in every interpreta-
tion, this also had the effect of stipulating that it is a matter of logic that
there is something rather than nothing.

Since it is far from clear that logic should tell us that there must be
something rather than nothing, we might well be cheating a bit here.

If we refuse to cheat, though, then we pay a high cost. Here are
three things that we want to hold on to:

e VxFx + Fa: after all, that was VE.

e Fat+ dxFx: after all, that was dI.

« the ability to copy-and-paste proofs together: after all, reasoning
works by putting lots of little steps together into rather big chains.

If we get what we want on all three counts, then we have to countenance
that VxFx + 3xFx. So, if we get what we want on all three counts, the
proof system alone tells us that there is something rather than nothing.
And if we refuse to accept that, then we have to surrender one of the
three things that we want to hold on to!

Before we start thinking about which to surrender, we might want
to ask how much of a cheat this is. Granted, it may make it harder to
engage in theological debates about why there is something rather than
nothing. But the rest of the time, we will get along just fine. So maybe
we should just regard our proof system (and FOL, more generally) as
having a very slightly limited purview. If we ever want to allow for
the possibility of nothing, then we will have to cast around for a more
complicated proof system. But for as long as we are content to ignore
that possibility, our proof system is perfectly in order. (As, similarly, is
the stipulation that every domain must contain at least one object.)



30.4 Universal introduction

Suppose you had shown of each particular thing that it is I (and that
there are no other things to consider). Then you would be justified in
claiming that everything is F. This would motivate the following proof
rule. If you had established each and every single substitution instance
of ‘VxFx’, then you can infer ‘VxFx’.

Unfortunately, that rule would be utterly unusable. To establish
each and every single substitution instance would require proving ‘Fa’,
‘Fb, ..., ‘Fjo, ..., ‘Fri’, ..., and so on. Indeed, since there are
infinitely many names in FOL, this process would never come to an end.
So we could never apply that rule. We need to be a bit more cunning
in coming up with our rule for introducing universal quantification.

Our cunning thought will be inspired by considering:

VaFx .. VyFy

This argument should obviously be valid. After all, alphabetical varia-
tion ought to be a matter of taste, and of no logical consequence. But
how might our proof system reflect this? Suppose we begin a proof thus:

1 VxFx
2 | Fa VE 1

We have proved ‘Fa’. And, of course, nothing stops us from using the
same justification to prove ‘F¥’, ‘F¢’, ..., ‘Fjo’, ..., “Fr00,. . ., and so
on until we run out of space, time, or patience. But reflecting on this,
we see that there is a way to prove F¢, for any name ¢. And if we can
do it for any thing, we should surely be able to say that ‘F’ is true of
everything. This therefore justifies us in inferring ‘VyF'y’, thus:

1 VxFx
2 | Fa VE 1
3 | VyFy VI 2

The crucial thought here is that ‘e’ was just some arbitrary name. There
was nothing special about it—we might have chosen any other name—
and still the proof would be fine. And this crucial thought motivates
the universal introduction rule (VI):



m | X(...c...c...)
VaX(...x...x...) VI m

¢ must not occur in any undischarged assumption or premise.
x must not occur in X(...c...c...)

It is important to appreciate that to apply the rule correctly we
must replace every occurrence of the name ¢ by the variable x. A
crucial aspect of this rule, though, is bound up in the first constraint.
This constraint ensures that we are always reasoning at a sufficiently
general level (the second constraint guarantees that the variable x is
not already bound by a different quantifier in X which would lead to
unintended results.)

To see the constraint in action, consider this terrible argument:

Everyone loves Kylie Minogue; therefore everyone loves
themselves.

We might symbolize this obviously invalid inference pattern as:
VaLxk . VxLxx

Now, suppose we tried to offer a proof that vindicates this argument:

1
2 | Lkk VE 1
3 | VaLxx naughtily attempting to invoke VI 2

This is not allowed, because ‘k’ occurred already in an undischarged
assumption, namely, on line 1. The crucial point is that, if we have
made any assumptions about the object we are working with, then we
are not reasoning generally enough to license VI.

Although the name may not occur in any undischarged assumption,
it may occur as a discharged assumption. That is, it may occur in a
subproof that we have already closed. For example:



1 Gd

2 Gd R1

3 |Gd— Gd —11-2
4

V2(Gz — G=z) VI 3

This tells us that ‘Vz(Gz — Gz)’ is a theorem. And that is as it should
be.

30.5 Existential elimination

Suppose we know that something is F. The problem is that simply know-
ing this does not tell us which thing is F. So it would seem that from
‘JxFx’ we cannot immediately conclude ‘Fa’, ‘Fey3’, or any other sub-
stitution instance of the sentence. What can we do?

Suppose we know that something is F, and that everything which is
F is G. In (almost) natural English, we might reason thus:

Since something is F, there is some particular thing which
is an F. We do not know anything about it, other than that
it’s an F, but for convenience, let’s call it ‘obbie’. So: obbie
is F. Since everything which is F is G, it follows that obbie is
G. But since obbie is G, it follows that something is G. And
nothing depended on which object, exactly, obbie was. So,
something is G.

We might try to capture this reasoning pattern in a proof as follows:

1 | 3xFx

2 | Vx(Fx — Gx)

3 Fo

4 Fo— Go VE 2

5 Go —E 4,3
6 AxGx s

7 | AxGx JdE 1, 3-6




Breaking this down: we started by writing down our assumptions. At
line 3, we made an additional assumption: ‘Fo’. This was just a substi-
tution instance of ‘JxFx’. On this assumption, we established ‘IxGx’.
Note that we had made no special assumptions about the object named
by ‘0’; we had only assumed that it satisfies ‘Fx’. So nothing depends
upon which object it is. And line 1 told us that something satisfies ‘Fx’,
so our reasoning pattern was perfectly general. We can discharge the
specific assumption ‘Fo’, and simply infer ‘IxGx’ on its own.

Putting this together, we obtain the existential elimination rule (JE):

=

m | IxX(..x...x...)
i |X(...c...c...)
J Y
Y JE m, i—j

¢ must be new to the proof: it does not occur in any line < i;
¢ must not occur in Y.

As with universal introduction, the constraints are extremely impor-
tant. To see why, consider the following terrible argument:

Tim Button is a lecturer. There is someone who is not a
lecturer. So Tim Button is both a lecturer and not a lecturer.

We might symbolize this obviously invalid inference pattern as follows:
Lb,3x—Lx .. Lb A -Lb

Now, suppose we tried to offer a proof that vindicates this argument:

1 | Lb

2 | Ix-Lx

3 -Lb

4 LbA-Lb ALl 3

5 | LbA-Lb naughtily attempting to invoke 3E 2, 3—4



The last line of the proof is not allowed. The name that we used in our
substitution instance for ‘Ix—Lx’ on line 3, namely ‘4’, occurs in line
4. The following proof would be no better:

1 | Lb

2 | Ix-Lx

3 -Lb

4 LbA-Lb ALl 3

5 Ax(Lx A =Lx) a4

6 | Jx(Lx A—-Lx) naughtily attempting to invoke JE 2, 3-5

The last line of the proof would still not be allowed. For the name that
we used in our substitution instance for ‘x—Lx’, namely ‘4’, occurs in
an undischarged assumption, namely line 1.

The moral of the story is this. If you want to squeeze information out
of an existential quantifier, choose a new name for your substitution instance.
That way, you can guarantee that you meet all the constraints on the
rule for JE.

Practice exercises

A. The following two ‘proofs’ are incorrect. Explain why both are incor-
rect. Also, provide interpretations which would invalidate the fallacious
argument forms the ‘proofs’ enshrine:

1 | VxRxx 1 | Vx3yRxy
2 | Raa VE 1 2 | 3yRay VE 1
3 | VyRay V12 3 Raa
4 | VxVyRxy VI3 4 JxRxx a3
5 | AxRxx JE 2, 3-4

B. The following three proofs are missing their citations (rule and line
numbers). Add them, to turn them into bona fide proofs.



1 | Vx3dy(Rxy V Ryx)

2 | Vx-Rmx

3 | y(Rmy VvV Rym)

4 RmaV Ram

5 -Rma

6 Ram

7 JxRxm

8 | AxRxm

1 Vx(3yLxy — VzLzx) 1 Vx(Jx — Kx)
2 Lab 2 JxVyLxy

3 dyLay — VzLza 3 Vx Jx

4 dyLay 4 VyLay

5 VzLza 5 Laa

6 Lca 6 Ja

7 JyLey — VzLzc 7 Ja— Ka
8 JyLcy 8 Ka

9 VzLzc 9 Ka A Laa
10 | Lee 10 Ax(Kx A Lxx)
11 | VxLxx 11 | 3x(Kx A Lxx)

C. In §?? problem A, we considered fifteen syllogistic figures of Aris-
totelian logic. Provide proofs for each of the argument forms. NB: You
will find it much easier if you symbolize (for example) ‘No F is G’ as
Yx(Fx — -Gx)’.

D. Aristotle and his successors identified other syllogistic forms which
depended upon ‘existential import’. Symbolize each of the following
argument forms in FOL and offer proofs.



Barbari. Something is H. All G are F. All H are G. So: Some H
is F

Celaront. Something is H. No G are F. All H are G. So: Some H
is not F

Cesaro. Something is H. No F are G. All H are G. So: Some H
is not F.

Camestros. Something is H. All F are G. No H are G. So: Some
H is not F.

Felapton. Something is G. No G are F. All G are H. So: Some H
is not F.

Darapti. Something is G. All G are F. All G are H. So: Some H
is F.

Calemos. Something is H. All F are G. No G are H. So: Some
H is not F.

Fesapo. Something is G. No F is G. All G are H. So: Some H is
not F.

Bamalip. Something is F. All F are G. All G are H. So: Some H
are F.

E. Provide a proof of each claim.

[
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FVxEFx Vv -VxFx

FVYz(PzV —Pz)

Vx(Ax — Bx),3xAx + IxBx

Vax(Mx < Nx),Ma A AxRxa + AxNx

VaVyGxy + IxGxx

FVxRxx — Jx3yRxy

FVy3x(Qy — Qx)

Na—->Vx(Mx & Ma),Ma,-Mbt+ -Na

VaVy(Gxy — Gyx) F VaVy(Gxy < Gyx)

Va(~MxV Ljx),Vx(Bx — Ljx),Vx(MxV Bx) + VxLjx

F. Write a symbolization key for the following argument, symbolize it,
and prove it:

There is someone who likes everyone who likes everyone
that she likes. Therefore, there is someone who likes herself.

G. Show that each pair of sentences is provably equivalent.

1.
2.

3.

Vx(Ax — —Bx), =3x(Ax A Bx)
Vx(=Ax — Bd),VxAx vV Bd
JxPx — Qc, Vx(Px — Qc)



H. For each of the following pairs of sentences: If they are provably
equivalent, give proofs to show this. If they are not, construct an inter-
pretation to show that they are not logically equivalent.

VxPx — Qc,Vx(Px — Qc)
VaxVyVzBxyz NxBxxx
VxVyDxy,VyVxDxy
JxVyDxy,Vy3IxDxy

Vx(Rca < Rxa),Rca & YxRxa

EAlL ol o S

I. For each of the following arguments: If it is valid in FOL, give a proof.
If it is invalid, construct an interpretation to show that it is invalid.

1. dyVxRxy .. VaIyRxy
2. Vx3dyRxy . IpVxRxy
3. Ax(Px A—Qx) .. Vx(Px — —Qx)
4. Vx(Sx > Ta),Sd .. Ta
5. Vx(Ax — Bx),Yx(Bx — Cx) .. Vx(Ax — Cx)
6. dx(Dx V Ex),Vx(Dx — Fx) .. 3x(Dx A Fx)
7. Vx¥y(Rxy vV Ryx) .. Rjj
8. IxIy(Rxy VvV Ryx) .. Rjj
9. VxPx — VxQx,3x-Px .. Ix-0x
10. dxMx — IxNx, -AxNx .. Vx-Mx



CHAPTER 31

Conversion of
quantifiers

In this section, we will add some additional rules to the basic rules of
the previous section. These govern the interaction of quantifiers and
negation.

In §19, we noted that =3xX is logically equivalent to Vx—X. We
will add some rules to our proof system that govern this. In particular,
we add:

m Vx-X
-Jx X CQOm

and

m | -3JxX
Vx-X CQm

Equally, we add:
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m Jx—-X

-VxX CQm

and

m =VxX

Ix-X CQm

\.

Practice exercises

A. Show in each case that the sentences are provably inconsistent:

1. Sa—> Tm,ITm— Sa,TmA-Sa

2. =JxRxa,VxVyRyx

3. =3x3yLxy,Laa

4. Yx(Px — 0x),Vz(Pz — Rz),YyPy,~Qa A -Rb
B. Show that each pair of sentences is provably equivalent:
1. Vx(Ax — —Bx),—~3x(Ax A Bx)
2. Yx(—Ax — Bd),YxAx v Bd

C. In §??, we considered what happens when we move quantifiers
‘across’ various logical operators. Show that each pair of sentences
is provably equivalent:

Vx(Fx A Ga),YxFx A Ga
Ax(FxV Ga),3xFx Vv Ga
Vx(Ga — Fx),Ga — VxFx
Vx(Fx — Ga),3xFx — Ga
Ax(Ga — Fx),Ga — 3xFx
Ax(Fx — Ga),YxFx — Ga

SRR AL B S

NB: the variable ‘¥’ does not occur in ‘Ga’.

When all the quantifiers occur at the beginning of a sentence, that
sentence is said to be in prenex normal form. These equivalences are
sometimes called prenexing rules, since they give us a means for putting
any sentence into prenex normal form.



CHAPTER 32

Derived rules

As in the case of TFL, we first introduced some rules for FOL as basic
(in §30), and then added some further rules for conversion of quantifiers
(in §31). In fact, the CQ rules should be regarded as derived rules, for
they can be derived from the bdasic rules of §30. (The point here is as
in §16.) Here is a justification for the first CQ rule:

1 Vx—Px

2 AxPx

3 Pb

4 DaV -Da

5 -Pb VE 1

6 Pb R3

7 =(DaV -Da) -1 4-6

8 —(DaV -Da) 3E 2, 3-7
9 DaV -Da LEM

10 | -3xPx -12-9

Here is a justification of the third CQ rule:

262



Jx—Px
VxPx

-Pb

DaV —Da

Pb

-Pb
—(Da Vv —Da)

—(DaV —Da)

© 0 NN oY W N

DaV —-Da

=
(=)

-VxPx

VE 2

R3

-1 4-6
JE 1, 3-7
LEM

-1 2-10

This explains why the CQ rules can be treated as derived. Similar
justifications can be offered for the other two CQ rules.

Practice exercises

A. Offer proofs which justify the addition of the second and fourth CQ

rules as derived rules.



CHAPTER 33

Proof-theoretic
and semantic
concepls

We have used two different turnstiles in this book. This:
Xl,XQ,. .. ,Xn +C

means that there is some proof which starts with assumptions
X1,Xs,. .., X, and ends with C (and no undischarged assumptions other
than X7, Xy,...,X,). This is a proof-theoretic notion.
By contrast, this:
X1,X,...,. X, eC

means that there is no valuation (or interpretation) which makes all of
X1,Xy,. .., X, true and makes C false. This concerns assignments of
truth and falsity to sentences. It is a semantic notion.

It cannot be emphasized enough that these are different notions.
But we can emphasize it a bit more: They are different notions.

Once you have internalised this point, continue reading.

Although our semantic and proof-theoretic notions are different,
there is a deep connection between them. To explain this connection,we
will start by considering the relationship between logical truths and
theorems.
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To show that a sentence is a theorem, you need only produce a
proof. Granted, it may be hard to produce a twenty line proof, but it
is not so hard to check each line of the proof and confirm that it is
legitimate; and if each line of the proof individually is legitimate, then
the whole proof is legitimate. Showing that a sentence is a logical truth,
though, requires reasoning about all possible interpretations. Given a
choice between showing that a sentence is a theorem and showing that
it is a logical truth, it would be easier to show that it is a theorem.

Contrawise, to show that a sentence is not a theorem is hard. We
would need to reason about all (possible) proofs. That is very difficult.
However, to show that a sentence is not a logical truth, you need only
construct an interpretation in which the sentence is false. Granted, it
may be hard to come up with the interpretation; but once you have done
so, it is relatively straightforward to check what truth value it assigns
to a sentence. Given a choice between showing that a sentence is not a
theorem and showing that it is not a logical truth, it would be easier to
show that it is not a logical truth.

Fortunately, a sentence is a theorem if and only if it is a logical truth. As
a result, if we provide a proof of X on no assumptions, and thus show
that X is a theorem, we can legitimately infer that X is a logical truth;
i.e.,, F X. Similarly, if we construct an interpretation in which X is false
and thus show that it is not a logical truth, it follows that X is not a
theorem.

More generally, we have the following powerful result:

Xl,XQ,. .. ,Xn FY iff Xl,XQ,. .. ,Xn EY

This shows that, whilst provability and entailment are different notions,
they are extensionally equivalent. As such:

» An argument is valid iff the conclusion can be proved from the premises.

e Two sentences are logically equivalent iff they are provably equiva-
lent.

¢ Sentences are provably consistent iff they are not provably inconsis-
tent.

For this reason, you can pick and choose when to think in terms of
proofs and when to think in terms of valuations/interpretations, doing
whichever is easier for a given task. The table on the next page sum-
marises which is (usually) easier.

It is intuitive that provability and semantic entailment should agree.
But—Ilet us repeat this—do not be fooled by the similarity of the sym-
bols ‘" and ‘+’. These two symbols have very different meanings. The



fact that provability and semantic entailment agree is not an easy result
to come by.

In fact, demonstrating that provability and semantic entailment
agree is, very decisively, the point at which introductory logic becomes
intermediate logic.
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Appendices



Symbolic

notation

1.1 Alternative nomenclature

Truth-functional logic. TFL goes by other names. Sometimes it is
called sentential logic, because it deals fundamentally with sentences.
Sometimes it is called propositional logic, on the idea that it deals fun-
damentally with propositions. We have stuck with truth-functional logic,
to emphasize the fact that it deals only with assignments of truth and
falsity to sentences, and that its connectives are all truth-functional.

First-order logic. FOL goes by other names. Sometimes it is called
predicate logic, because it allows us to apply predicates to objects. Some-
times it is called quantified logic, because it makes use of quantifiers.

Formulas. Some texts call formulas well-formed formulas. Since ‘well-
formed formula’ is such a long and cumbersome phrase, they then ab-
breviate this as wjff. This is both barbarous and unnecessary (such
texts do not countenance ‘ill-formed formulas’). We have stuck with
‘formula’.

In §4.3, we defined sentences of TFL. These are also sometimes called
‘formulas’ (or ‘well-formed formulas’) since in TFL, unlike FOL, there
is no distinction between a formula and a sentence.
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Valuations. Some texts call valuations truth-assignments, or truth-value
assignments.

Expressive adequacy. Some texts describe TFL as truth-functionally
complete, rather than expressively adequate.

n-place predicates. We have chosen to call predicates ‘one-place’,
‘two-place’, ‘three-place’, etc. Other texts respectively call them
‘monadic’, ‘dyadic’, ‘triadic’, etc. Still other texts call them ‘unary’,
‘binary’, ‘ternary’, etc.

Names. In FOL, we have used ‘a’, ‘b’, ‘c’, for names. Some texts
call these ‘constants’. Other texts do not mark any difference between
names and variables in the syntax. Those texts focus simply on whether
the symbol occurs bound or unbound.

Domains. Some texts describe a domain as a ‘domain of discourse’,
or a ‘universe of discourse’.

1.2 Alternative symbols

In the history of formal logic, different symbols have been used at dif-
ferent times and by different authors. Often, authors were forced to use
notation that their printers could typeset.

This appendix presents some common symbols, so that you can
recognize them if you encounter them in an article or in another book.

Negation. Two commonly used symbols are the hoe, ‘=°, and the
swung dash or tilda, ‘~. There are some issues typing ‘=’ on a keyboard,
and ‘~’ is perfectly acceptable for you to use. In some more advanced
formal systems it is necessary to distinguish between two kinds of nega-
tion; the distinction is sometimes represented by using both ‘=’ and
‘~’. Older texts sometimes indicate negation by a line over the formula

being negated, e.g., A A B. Some texts use ‘x # y’ to abbreviate ‘~x=y’.

Disjunction. The symbol ‘V’ is typically used to symbolize inclusive
disjunction. One etymology is from the Latin word ‘vel’, meaning ‘or’.



Conjunction. The two symbols commonly used for conjuction are
wedge, ‘N, and ampersand, ‘& . The ampersand is a decorative form of
the Latin word ‘et’, which means ‘and’. (Its etymology still lingers in
certain fonts, particularly in italic fonts; thus an italic ampersand might
appear as ‘@’.) We have chosen to use it to allow for easier typing on
a keyboard during these online-heavy times. However there are some
substantial reservations about this choice. This symbol is commonly
used in natural English writing (e.g. ‘Smith & Sons’), and so even
though it is a natural choice, many logicians use a different symbol to
avoid confusion between the object and metalanguage: as a symbol in
a formal system, the ampersand is not the English word ‘&’. The most
common choice now is ‘A’, which is a counterpart to the symbol used
for disjunction. Sometimes a single dot, ‘-, is used. In some older texts,
there is no symbol for conjunction at all; ‘4 and B’ is simply written
‘AB’.

Material Conditional. There are two common symbols for the ma-
terial conditional: the arrow, ‘—’, and the hook, ‘2’.

Material Biconditional. The double-headed arrow, ‘<’, is used in sys-
tems that use the arrow to represent the material conditional. Systems
that use the hook for the conditional typically use the ¢riple bar, ‘=, for
the biconditional.

Quantifiers. The universal quantifier is typically symbolized as a ro-
tated ‘A’, and the existential quantifier as a rotated, ‘E’. In some texts,
there is no separate symbol for the universal quantifier. Instead, the
variable is just written in parentheses in front of the formula that it
binds. For example, they might write ‘(x)Px’ where we would write
Vx Px’.

These alternative typographies are summarised below:

negation -, ~
conjunction A, &, -

disjunction Vv
conditional —, D>
biconditional ¢, =

universal quantifier Vx, (x)



Quick

reference

2.1 Sentences of TFL

Definition of being a sentence of TFL:

1. Every atomic sentence is a sentence.

> A,B,C...,W, or with subscripts 41, B3, A100, /375

o. If X is a sentence, then —X is a sentence.
If X and Y are sentences, then (X A Y) is a sentence.
If X and Y are sentences, then (X VvV Y) is a sentence.
If X and Y are sentences, then (X — Y) is a sentence.
If X and Y are sentences, then (X < Y) is a sentence.

7. Nothing else is a sentence.

2.2 Truth Rules for Connectives in TFL

T, T~T T,T~T
. T~ F A T,F~F v: T,F~T
" F~T " F, T~F " F, T~T
F,F~F F,F~F
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T, T~ T
T,F ~ F
F, T~ T
F,F~T

2.3 Symbolization

T, T~ T
T,F ~ F
F,T~ F
F,F~T

Rough Meaning of the TFL Connectives

symbol name rough meaning
= negation ‘It is not the case that...’
A conjunction  ‘...and..’
\ disjunction ‘..or...
— conditional If ... then ...’
<—> biconditional ‘... if and only if ...’

Sentential Connectives

It is not the case that P
PorQ

P and Q

If P, then Q

P if and only if Q

Further symbolisation help:

Neither P nor Q

-P
(PVQ)
(PAQ)
(P—0)
(P < Q)

~(PV Q) or (=P A=Q)

P but Q (PAQ)

P unless Q (PVvO

P only if Q (P—-0)
Predicates

All Fs are Gs Vx(Fx — Gx)

Some Fs are Gs Ax(Fx A Gx)

Not all Fs are Gs
No Fs are Gs

-VYx(Fx — Gx) or 3x(Fx A =Gx)
Vx(Fx — —=Gx) or ~3x(Fx A Gx)



Identity

Only cis G Vx(Gx — x=c) or perhaps <.
Everything besides c is G Vx(mx=¢c — Gx)

The Fis G x(Fx AVy(Fy — x=) A Gx)
It is not the case that the Fis G —-3x(Fx AVy(Fy — x=9) A Gx)
The F is non-G Jx(Fx AVy(Fy — x=y) A -Gx)

2.4 Using identity to symbolize quantities

There are at least Fs.

one: dxFx
two: Jx13xe(Fx1 A Fxg A —x1=x9)
three: Jx13xoTx3(Fx1 A Fxg A Fxz A —x1=x9 A =x1=X3 A —x9 =X3)
four: Jx13xoTxgTxs(Fx1 A Fxg A Fxg A Fxy A
—X1=X9 A X1 =Xx3 A\ X1 =x4/\—|x2=x3/\—|x2=x4/\—|x3=x4)
n: Axp .. 3, (Fxi Ao AFx, A-x1=Xx9 A oo A =Xy 1=X,)

There are at most Fs.

One way to say ‘there are at most n Fs’ is to put a negation sign in front
of the symbolization for ‘there are at least # + 1 Fs’. Equivalently, we
can offer:

one: Vx1Vxy [(Fxl A Fxg) — x1:x2]
two: Va1VagVag [(Fxl AFxg ANFx3) > (x1=x9V x1=x3 V x2=x3)]
three: Vx1VxoVxsViay [(Fxl A Fxg A Fx3 A Fxy) —
(x1=x2 VXx1=xX3VX1=X4VX9=X3V Xog=X4V x3=x4)]
n: VYxp .. .Vxn+1[(Fx1 Ao . AFxyq) > (x1=x9 V... Vxnzxn+1)]

There are exactly Fs.

One way to say ‘there are exactly z Fs’ is to conjoin two of the symbol-
izations above and say ‘there are at least # Fs and there are at most »
Fs.” The following equivalent formulae are shorter:

zero: Vx—Fx
one: Jx[Fx AVy(Fy — x=y)]
two: Jx1dxy [Fx1 A Fxg N —x1=x9 A\ Vy(Fy - (=x VnyQ))]
three: Jxq3dx9Txs [Fxl ANFxg ANFx3 A—x1=x9 A —x1=Xx3 A —X9=X3 A
Vy(Fy = (=2 Vy=xVy=x))]|



n: Elxl...Elxn[Fxl/\.../\Fxn/\—|x1=x2/\.../\—-xn_1=xn/\
Vy(Fy > (3=x1 V... Vy=x,))]



2.5 Basic deduction rules for TFL

Conjunction m | XAY
m | x X AE m
Y
" m | XAY
XAY Al
™ Y AE m
Disjunction m | XVvY
m X i X
Xvy VI m :
m X
k
YvX vim I
l Z
Z VE m, i—j, k-1
Conditional m | X>Y
m X n X
Y —Em, n
n Y
X->Y —I m-n
Negation m X
m X
n Y
n Y
k -Y
k -Y X -E m-k
-X =1 m—/c




Reiteration Law of Excluded Middle
m X XV-X LEM

X Rm



2.6 Derived rules for TFL

Disjunctive syllogism Explosion
n -X n -X
Y DS m, n Y Explosion m, n
XvYy
" De Morgan Rules
n Y
m | 2(XVY)
X DS m, n
X A=Y DeM m
Modus Tollens
m X A=Y
m X-Y
-(XVY) DeM m
n Y
-X MT m, n m _|(X A Y)

. .. -XvVv-aY DeM m
Double-negation elimination

m =X m -XV-Y
X DNE m (X AY) DeM m




2.7 Basic deduction rules for FOL

Universal elimination
X(..c...c...) VE m

Universal introduction
m | X(...c...c...)
VaX(...x...x...) Vim

¢ must not occur in any undis-
charged assumption
X must not occur in

X(..c...c...)

Existential introduction

m | X(...c...c...)
AxX(...x...c...) A m

Identity introduction

c=c¢ =1

Identity elimination

m | a=b
n X(..a...a..))
X(..b...a..) =Em,n

2.8 Derived rules for FOL

X must not occur

X(..c...c...)

Existential elimination

m | IxX(..x...x..

¢ must not occur in

Y

in

3E m, i—j

any undischarged assumption,

indxX(...x...x...),
orinY



Vx-X
—-dxX

—-3x X
Va-X

CQm

CQm

dx-X

=VaX

-VxX
dx—-X

CQm






In the Introduction to his volume Symbolic Logic,
Charles Lutwidge Dodson advised: “When you
come to any passage you don’t understand, read it
again: if you still don’t understand it, read it again:
if you fail, even after three readings, very likely your
brain is getting a little tired. In that case, put the
book away, and take to other occupations, and next
day, when you come to it fresh, you will very likely
find that it is quite easy.”

The same might be said for this volume, although
readers are forgiven if they take a break for snacks
after two readings.
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